Abstract:
An inline dark field holographic method for measuring strain in a semiconductor or other crystalline material using a transmission electron microscope having an electron gun for passing an electron beam through strained and unstrained specimens. A condenser mini-lens between the magnetic tilting coil and the specimens increases defection of the beam at an angle with prior to passing through the pair of specimens. The first objective lens forms a virtual image of each of the specimens and the second objective lens focuses the virtual images of each of the specimens at an intermediate image plane to form intermediate images of each of the specimens. The biprism creates the interference pattern between the specimens is formed at the image plane, which may then be viewed to determine the degree of strain of the strained specimen and provides a coma-free strain map with minimal optical distortion.