Abstract:
A suspension assembly between a sprung element and an unsprung element includes a load-carrying spring element arranged in parallel with a negative stiffness element between the sprung element and the unsprung element. The negative stiffness element includes first and second opposed mutually-repelling elements.
Abstract:
A suspension system includes a first and second mass and an actuator connected with the first mass and with the second mass and configured to influence a relative movement between the first mass and the second mass. The actuator includes a tube, and a magnetic assembly disposed in the tube. The actuator is configured to generate a force between the magnetic assembly and the tube as a result of the relative movement between the two. A motor is configured to rotate the magnetic assembly relative to the tube to vary the force in a velocity-dependent relationship. The actuator may generate forces to resist or assist motion between the first and second masses.
Abstract:
An apparatus for controlling force of a magnetic lead screw actuator includes a magnetic lead screw actuator, an external control module and at least one sensor device integrated within the magnetic lead screw actuator. The magnetic lead screw actuator includes an electric machine, a rotor, and a translator. The rotor includes a rotor magnet assembly forming first helical magnetic threads along the rotor and the translator includes a translator magnet assembly forming second helical magnetic threads along the translator. Rotation of the rotor by the electric machine effects linear translation of the translator by interaction of the first and second helical magnetic threads. The external control module is electrically operatively coupled to an electric machine controller of the magnetic lead screw actuator. The at least one sensor device integrated within the magnetic lead screw actuator is configured to measure a parameter indicative of a relative displacement between the rotor and the translator and this parameter is provided as feedback to the electric machine controller.
Abstract:
A load-carrying spring is coupled between a sprung element and an unsprung element. A magnetic lead screw damper is coupled between the sprung element and the unsprung element. The magnetic lead screw damper includes a magnetic lead screw arranged in series with an electric motor, and the magnetic lead screw includes a rotor screw and a stator nut. The rotor screw includes a rotor magnet assembly forming first helical magnetic threads, and is rotatably coupled to the electric motor. The stator nut includes a stator magnet assembly forming second helical magnetic threads, and a stator frame. The stator magnet assembly includes an axial length equal to an axial length of the rotor magnet assembly. Rotation of the rotor screw effects linear translation of the stator nut by interaction of the first and second helical magnetic threads.