System and method for predictive navigation control

    公开(公告)号:US11485387B2

    公开(公告)日:2022-11-01

    申请号:US17114977

    申请日:2020-12-08

    Abstract: A method of predictive navigation control for an ego vehicle includes: comparing a cue node to each of a plurality of episodic memory nodes in an episodic memory structure, wherein the cue node represents a new event representing distances, speeds and headings of one or more newly observed objects about the ego vehicle, and wherein the episodic memory structure includes a network of nodes each representing a respective previously existing event and having a respective node risk and likelihood; determining which of the nodes has a smallest respective difference metric, thus defining a best matching node; consolidating the cue node with the best matching node if the smallest difference metric is less than a match tolerance, else adding a new node corresponding to the cue node to the episodic memory structure; and identifying a likeliest next node and/or a riskiest next node.

    SYSTEM AND METHOD FOR PREDICTIVE NAVIGATION CONTROL

    公开(公告)号:US20220177002A1

    公开(公告)日:2022-06-09

    申请号:US17114977

    申请日:2020-12-08

    Abstract: A method of predictive navigation control for an ego vehicle includes: comparing a cue node to each of a plurality of episodic memory nodes in an episodic memory structure, wherein the cue node represents a new event representing distances, speeds and headings of one or more newly observed objects about the ego vehicle, and wherein the episodic memory structure includes a network of nodes each representing a respective previously existing event and having a respective node risk and likelihood; determining which of the nodes has a smallest respective difference metric, thus defining a best matching node; consolidating the cue node with the best matching node if the smallest difference metric is less than a match tolerance, else adding a new node corresponding to the cue node to the episodic memory structure; and identifying a likeliest next node and/or a riskiest next node.

Patent Agency Ranking