Abstract:
A multi-stage transmission includes a first stage, a second stage, a final drive, and at least two torque transmitting devices. The at least two torque transmitting members selective couple the first stage, the second stage and the final drive with each other to produce a reverse gear or one of a plurality of forward gears.
Abstract:
A transmission includes a single planetary gearset, a first torque machine, an output member and a two-speed gearset that is coupled to the drive member. The single planetary gearset includes a sun gear, a carrier gearset and a ring gear, wherein the carrier gearset is rotatably couplable to the input member and rotatably couplable to the output member, the sun gear is rotatably coupled to a rotor of the first torque machine, and the ring gear is rotatably couplable to the input member and rotatably couplable to the output member. The output member is rotatably couplable to the two-speed gearset, which is configured to operate in one of a first gear ratio and a second gear ratio.
Abstract:
A transmission includes a single planetary gearset, a first torque machine, an output member and a two-speed gearset that is coupled to the drive member. The single planetary gearset includes a sun gear, a carrier gearset and a ring gear, wherein the carrier gearset is rotatably couplable to the input member and rotatably couplable to the output member, the sun gear is rotatably coupled to a rotor of the first torque machine, and the ring gear is rotatably couplable to the input member and rotatably couplable to the output member. The output member is rotatably couplable to the two-speed gearset, which is configured to operate in one of a first gear ratio and a second gear ratio.
Abstract:
A vehicle includes an engine, fraction motor, final drive assembly, battery pack, and a supercapacitor module electrically connected to the battery pack. The vehicle also has first and second clutches and a controller. The clutches have opposite apply states. The first clutch connects an engine driveshaft to the motor to establish a neutral-charging mode. The second clutch connects an output shaft of the motor to the final drive assembly to establish a drive mode. The controller selects between the drive and neutral-charging modes in response to input signals. The drive mode uses energy from the supercapacitor module and battery pack to power the traction motor. The neutral-charging mode uses output torque from the engine to charge the supercapacitor module and battery pack. The clutches may be pnemauically-actuated, and the vehicle may be characterized by an absence of planetary gear sets.
Abstract:
A vehicle includes an engine, fraction motor, final drive assembly, battery pack, and a supercapacitor module electrically connected to the battery pack. The vehicle also has first and second clutches and a controller. The clutches have opposite apply states. The first clutch connects an engine driveshaft to the motor to establish a neutral-charging mode. The second clutch connects an output shaft of the motor to the final drive assembly to establish a drive mode. The controller selects between the drive and neutral-charging modes in response to input signals. The drive mode uses energy from the supercapacitor module and battery pack to power the traction motor. The neutral-charging mode uses output torque from the engine to charge the supercapacitor module and battery pack. The clutches may be pneumatically-actuated, and the vehicle may be characterized by an absence of planetary gear sets.