Abstract:
An internal combustion engine includes a cylinder block defining a cylinder and a cylinder head mounted to the block. The cylinder head supplies air and fuel to the cylinder for combustion therein. The engine also includes an exhaust manifold operatively connected to the cylinder head and having a first outlet and a second outlet configured to exhaust post-combustion gasses from the cylinder. The engine also includes a turbocharging system configured to pressurize an airflow for delivery thereof to the cylinder. The turbocharging system includes a low-flow turbocharger driven by the post-combustion gasses from the first outlet to pressurize the airflow and a high-flow turbocharger driven by the post-combustion gasses from the second outlet to pressurize the airflow. The turbocharging system additionally includes a flow control device for selectively directing the post-combustion gasses to the low-flow and high-flow turbochargers. A vehicle employing such an engine is also disclosed.
Abstract:
An internal combustion engine includes a cylinder block defining a cylinder and a cylinder head mounted to the block. The cylinder head supplies air and fuel to the cylinder for combustion therein. The engine also includes an exhaust manifold operatively connected to the cylinder head and having a first outlet and a second outlet configured to exhaust post-combustion gasses from the cylinder. The engine also includes a turbocharging system configured to pressurize an airflow for delivery thereof to the cylinder. The turbocharging system includes a low-flow turbocharger driven by the post-combustion gasses from the first outlet to pressurize the airflow and a high-flow turbocharger driven by the post-combustion gasses from the second outlet to pressurize the airflow. The turbocharging system additionally includes a flow control device for selectively directing the post-combustion gasses to the low-flow and high-flow turbochargers. A vehicle employing such an engine is also disclosed.
Abstract:
An exhaust manifold for at least a portion of an internal combustion engine having a defined number of combustion chambers includes a plurality of inlet ports and four outlet ports. A first pair of the four outlet ports are disposed in gas flow communication with a first subset of the plurality of inlet ports, and a second pair of the four outlet ports different from the first pair are disposed in gas flow communication with a second subset of the plurality of inlet ports different from the first subset.
Abstract:
An exhaust manifold for at least a portion of an internal combustion engine having a defined number of combustion chambers includes a plurality of inlet ports and four outlet ports. A first pair of the four outlet ports are disposed in gas flow communication with a first subset of the plurality of inlet ports, and a second pair of the four outlet ports different from the first pair are disposed in gas flow communication with a second subset of the plurality of inlet ports different from the first subset.
Abstract:
In one exemplary embodiment, a method for active fuel management in an engine having a plurality of cylinders is provided, the method including stopping a fuel flow into a first set of the plurality of cylinders, the stopping causing a deactivation of the first set of cylinders and continuing injection of fuel into a second set of the plurality of cylinders to provide power while the first set of cylinders are deactivated. The method also includes injecting gas into the first set of the plurality of cylinders when each of the first set of cylinders are at bottom dead center, the injected gas increasing a cylinder pressure in each of the first set of cylinders that reduces an amplitude of first order torque variations during operation of the engine while the first set of cylinders are deactivated.
Abstract:
In one exemplary embodiment, a method for active fuel management in an engine having a plurality of cylinders is provided, the method including stopping a fuel flow into a first set of the plurality of cylinders, the stopping causing a deactivation of the first set of cylinders and continuing injection of fuel into a second set of the plurality of cylinders to provide power while the first set of cylinders are deactivated. The method also includes injecting gas into the first set of the plurality of cylinders when each of the first set of cylinders are at bottom dead center, the injected gas increasing a cylinder pressure in each of the first set of cylinders that reduces an amplitude of first order torque variations during operation of the engine while the first set of cylinders are deactivated.