Fuel cell stack break-in procedures and break-in conditioning systems

    公开(公告)号:US10158128B2

    公开(公告)日:2018-12-18

    申请号:US15451893

    申请日:2017-03-07

    Abstract: Disclosed are fuel cell stack break-in procedures, conditioning systems for performing break-in procedures, and motor vehicles with a fuel cell stack conditioned in accordance with disclosed break-in procedures. A break-in method is disclosed for conditioning a membrane assembly of a fuel cell stack. The method includes transmitting humidified hydrogen to the anode of the membrane assembly, and transmitting deionized water to the cathode of the membrane assembly. An electric current and voltage cycle are applied across the fuel cell stack while the fuel cell stack is operated in a hydrogen pumping mode until the fuel cell stack is determined to operate at a predetermined threshold for a fuel cell stack voltage output capability. During hydrogen pumping, the membrane assembly oxidizes the humidified hydrogen, transports protons from the anode to the cathode across the proton conducting membrane, and regenerates the protons in the cathode through a hydrogen evolution reaction.

    COMPOSITE ELECTRODE LAYER FOR POLYMER ELECTROLYTE FUEL CELL

    公开(公告)号:US20190280307A1

    公开(公告)日:2019-09-12

    申请号:US15915846

    申请日:2018-03-08

    Abstract: A polymer electrolyte membrane fuel cell includes a proton-conductive polymer electrolyte membrane, an anode catalyst layer overlying a first face of the polymer electrolyte membrane, and a cathode catalyst layer overlying a second face of the polymer electrolyte membrane. At least one of the anode catalyst layer or the cathode catalyst layer includes a composite electrode layer that comprises a colloidal or soluble ionomer binder component, a catalyst dispersed along with the colloidal or soluble ionomer binder component, and insoluble ionomer nanofibers disseminated throughout a thickness of the composite electrode layer. The presence of the insoluble ionomer nanofibers within the composite electrode layer may enhance the voltage performance of the fuel cell, particularly at high current densities and/or low relative humidity operating conditions. A method of making a composite electrode layer for a polymer electrolyte membrane fuel cell is also disclosed.

    SYSTEM AND METHOD FOR MEA CONDITIONING IN A FUEL CELL

    公开(公告)号:US20190190040A1

    公开(公告)日:2019-06-20

    申请号:US15846777

    申请日:2017-12-19

    Abstract: A controller-executed method for conditioning a membrane electrode assembly (MEA) in a fuel cell for use in a fuel cell stack includes humidifying a fuel inlet to the stack to a threshold relative humidity level, and maintaining a current density and cell voltage of the fuel cell at a calibrated current density level and hold voltage level, respectively, via the controller in at least one voltage recovery stage. The recovery stage has a predetermined voltage recovery duration. The method includes measuring the cell voltage after completing the predetermined voltage recovery duration, and executing a control action with respect to the fuel cell or fuel cell stack responsive to the measured cell voltage exceeding a target voltage, including recording a diagnostic code via the controller indicative of successful conditioning of the MEA. A fuel cell system includes the fuel cell stack and controller.

    FUEL CELL STACK BREAK-IN PROCEDURES AND BREAK-IN CONDITIONING SYSTEMS

    公开(公告)号:US20180261858A1

    公开(公告)日:2018-09-13

    申请号:US15451893

    申请日:2017-03-07

    Abstract: Disclosed are fuel cell stack break-in procedures, conditioning systems for performing break-in procedures, and motor vehicles with a fuel cell stack conditioned in accordance with disclosed break-in procedures. A break-in method is disclosed for conditioning a membrane assembly of a fuel cell stack. The method includes transmitting humidified hydrogen to the anode of the membrane assembly, and transmitting deionized water to the cathode of the membrane assembly. An electric current and voltage cycle are applied across the fuel cell stack while the fuel cell stack is operated in a hydrogen pumping mode until the fuel cell stack is determined to operate at a predetermined threshold for a fuel cell stack voltage output capability. During hydrogen pumping, the membrane assembly oxidizes the humidified hydrogen, transports protons from the anode to the cathode across the proton conducting membrane, and regenerates the protons in the cathode through a hydrogen evolution reaction.

Patent Agency Ranking