摘要:
A method for producing a fuel cell catalyst layer configured to prevent an increase in cell resistance, have excellent IV characteristic, and be even. The method includes the steps of: preparing a catalyst composite that comprises a titanium oxide support and platinum or a platinum alloy supported on a surface thereof, and an ionomer; mixing the catalyst composite, the ionomer, and a dispersion medium containing at least water and a tertiary alcohol having from 4 to 6 carbon atoms where a content ratio of the tertiary alcohol is the highest; and, while pulverizing aggregates comprising the catalyst composite and the ionomer, dispersing a mixture obtained by the pulverization in the dispersion medium.
摘要:
Disclosed is an anode for a molten carbonate fuel cell (MCFC) having improved creep property by adding an additive for imparting creep resistance to nickel-aluminum alloy and nickel as materials for an anode. Improved sintering property, creep property and increased mechanical strength of a molten carbonate fuel cell may be obtained accordingly.
摘要:
A method of producing a solid oxide fuel cell comprising tape casting an anode support and spraying layers onto the anode support. The layers that can be sprayed onto the anode support include an anode functional layer, an electrolyte layers, and a cathode functional layer.
摘要:
A membrane electrode assembly manufacturing method that includes: (a) forming a first electrode on a first release paper and a second electrode on a second release paper corresponding to the first electrode; (b) forming first incision parts in the first release paper at a predetermined interval along the first electrode's edge and second incision parts in the second release paper at a predetermined interval along the second electrode's edge; (c) adhering a first release paper surface on which the first electrode is formed on one electrolyte membrane surface and adhering one second release paper surface in which the second electrode is formed on the other electrolyte membrane surface; and (d) removing one part of the first release paper corresponding to the first electrode along the first incision part and removing one part of the second release paper corresponding to the second electrode along the second incision part.
摘要:
There are provided an electrode material for a fuel cell, a fuel cell comprising the same, and a method of manufacturing the fuel cell. The electrode material for a fuel cell comprises an electrode base material and spherical polystyrene particles forming pores on the electrode base material through heat treatment. In the case of the electrode material according to an exemplary embodiment of the present invention, the average particle size and content of the spherical polystyrene particles may be controlled to form pores having a uniform size on a sintering body formed of the electrode base material, and the control of the porosity thereof may be facilitated.
摘要:
This invention describes the recipe and preparation process of nano-scale electrolyte suspension and its application via a spin coating process for fabrication of airtight/fully dense electrolyte layers composed in solid oxide fuel cell-membrane electrode assembly with high performance characteristics. The recipe of nano-scale electrolyte suspension includes 10˜50 wt % nano-scale electrolyte powder, 0.01˜1 wt % poly acrylic acid (PAA as dispersant), 0.1˜5 wt % poly vinyl alcohol (PVA as binder), 0.005˜1 wt % octanol as defoamer, and deionized water as solvent. Solid oxide fuel cell fabricated via this recipe and process exhibits that the open-circuit voltage (OCV) is over 1 Volt, and maximum power density is 335 mW/cm2 at 800° C.
摘要:
A method for preparing a metal catalyst includes a proton conductive material coating layer formed on the surface of a conductive material. Also, an electrode may be prepared using the metal catalyst. The method for preparing the metal catalyst comprises mixing the conductive catalyst material, the proton conductive material, and a first solvent, casting the mixture onto a supporting layer and drying the mixture to form a conductive catalyst containing film. The method further comprises separating the conductive catalyst containing film from the supporting layer and pulverizing the conductive catalyst containing film to obtain the metal catalyst. The method for preparing the electrode comprises mixing the metal catalyst with a hydrophobic binder and a second solvent, coating the mixture on an electrode support, and drying it.
摘要:
A method for preparing a metal catalyst includes a proton conductive material coating layer formed on the surface of a conductive material. Also, an electrode may be prepared using the metal catalyst. The method for preparing the metal catalyst comprises mixing the conductive catalyst material, the proton conductive material, and a first solvent, casting the mixture onto a supporting layer and drying the mixture to form a conductive catalyst containing film. The method further comprises separating the conductive catalyst containing film from the supporting layer and pulverizing the conductive catalyst containing film to obtain the metal catalyst. The method for preparing the electrode comprises mixing the metal catalyst with a hydrophobic binder and a second solvent, coating the mixture on an electrode support, and drying it.
摘要:
A structure of fuel cell electrode comprises a diffusion layer having a surface, a conductive particle layer formed on the surface of the diffusion layer and a catalyst layer. The conductive particle layer has a plurality of conductive particles and a concavo-convex surface being composed of the conductive particles. The catalyst layer is formed on the concavo-convex surface of the conductive particle layer.
摘要:
A molten carbonate fuel cell anode comprising a porous anode body, which comprises a nickel-based alloy and at least one ceramic additive dispersed throughout the anode body. The amount of the ceramic additive in the anode body is between 5 and 50% by volume. The nickel-based alloy is Ni—Cr or Ni—Al, and the ceramic additive is one of CeO2, yttrium doped ceria, yttrium doped zirconia, TiO2, Li2TiO3, LiAlO2 and La0.8Sr0.2CoO3.