Abstract:
Embodiments are provided for receiving a request to output audio at a first speaker and a second speaker of an electronic device, determining that the electronic device is oriented in a portrait orientation or a landscape orientation, identifying, based on the determined orientation, a first equalization setting for the first speaker and a second equalization setting for the second speaker, providing, for output at the first speaker, a first audio signal with the first equalization setting, and providing, for output at the second speaker, a second audio signal with the second equalization setting.
Abstract:
Embodiments are provided for equalizing audio data for output by a speaker of an electronic device based on a local position or orientation of the electronic device. According to certain aspects, the electronic device can determine (858, 868) its local position based on various sensor data, and identify (870, 872) an appropriate equalization setting. In some cases, the electronic device can modify (876, 880) the equalization setting based on acoustic and/or optical data. The electronic device can apply (882) the modified or unmodified equalization setting to an audio signal and cause the speaker to output (886) the audio signal with the applied equalization setting.
Abstract:
Embodiments are provided for receiving a request to output audio at a first speaker and a second speaker of an electronic device, determining that the electronic device is oriented in a portrait orientation or a landscape orientation, identifying, based on the determined orientation, a first equalization setting for the first speaker and a second equalization setting for the second speaker, providing, for output at the first speaker, a first audio signal with the first equalization setting, and providing, for output at the second speaker, a second audio signal with the second equalization setting.
Abstract:
Embodiments are provided for equalizing audio data for output by a speaker of an electronic device based on a local position or orientation of the electronic device. According to certain aspects, the electronic device can determine (858, 868) its local position based on various sensor data, and identify (870, 872) an appropriate equalization setting. In some cases, the electronic device can modify (876, 880) the equalization setting based on acoustic and/or optical data. The electronic device can apply (882) the modified or unmodified equalization setting to an audio signal and cause the speaker to output (886) the audio signal with the applied equalization setting.
Abstract:
Embodiments are provided for receiving a request to output audio at a first speaker and a second speaker of an electronic device, determining that the electronic device is oriented in a portrait orientation or a landscape orientation, identifying, based on the determined orientation, a first equalization setting for the first speaker and a second equalization setting for the second speaker, providing, for output at the first speaker, a first audio signal with the first equalization setting, and providing, for output at the second speaker, a second audio signal with the second equalization setting.
Abstract:
A method includes receiving a request to output audio at a speaker of an electronic device, determining whether the speaker of the electronic device is facing substantially towards or away from a support surface, identifying, based on whether the speaker of the electronic device is facing substantially towards or away from the support surface, an equalization setting, and providing, for output at the speaker of the electronic device, an audio signal with the equalization setting.
Abstract:
Embodiments are provided for equalizing audio data for output by a speaker of an electronic device based on a local position or orientation of the electronic device. According to certain aspects, the electronic device can determine (858, 868) its local position based on various sensor data, and identify (870, 872) an appropriate equalization setting. In some cases, the electronic device can modify (876, 880) the equalization setting based on acoustic and/or optical data. The electronic device can apply (882) the modified or unmodified equalization setting to an audio signal and cause the speaker to output (886) the audio signal with the applied equalization setting.
Abstract:
Embodiments are provided for equalizing audio data for output by a speaker of an electronic device based on a local position or orientation of the electronic device. According to certain aspects, the electronic device can determine (858, 868) its local position based on various sensor data, and identify (870, 872) an appropriate equalization setting. In some cases, the electronic device can modify (876, 880) the equalization setting based on acoustic and/or optical data. The electronic device can apply (882) the modified or unmodified equalization setting to an audio signal and cause the speaker to output (886) the audio signal with the applied equalization setting.