Abstract:
An optical filter for screening out infrared and ultraviolet light includes a transparent substrate and a film stack formed on the substrate. The film stack includes a number of high refractive index layers and a number of low refractive index layers alternately stacked one on another. The film stack is represented as follows: (3.5H3.5L)7(2.5H2.5L)7(HL)6(0.76H0.76L)6, wherein, H represents a high refractive index layer having a base optical thickness equal to one fourth of a reference wavelength associated with the optical filter, L represents a low refractive index layer having a base optical thickness equal to one fourth of a reference wavelength associated with the optical filter, expressions enclosed in each parenthesis represent filter cavities, and superscripts represents the number of repetitions of the expression enclosed in that parenthesis.
Abstract:
An optical filter includes a transparent substrate, a first film stack and a second film stack. The first and second film stacks each includes a number of high refractive index layers and a number of low refractive index layers alternately stacked one on another. The first film stack is defined as (HL)7(0.76H0.76L)6, and the second film stack is defined as 0.5(HL)(1.3H1.3L)9(HL)8, wherein, H represents a high refractive index layer having a base optical thickness equal to one fourth of a first reference wavelength associated with the optical filter, L represents a low refractive index layer having a base optical thickness equal to one fourth of a first reference wavelength associated with the optical filter, the expression enclosed in each parenthesis represents a filter cavity, and the superscript represents the number of repetition of the expression enclosed in that parenthesis.
Abstract:
An optical filter includes a transparent substrate, a first film stack and a second film stack. The first and second film stacks each includes a number of high refractive index layers and a number of low refractive index layers alternately stacked one on another. The first film stack is defined as (HL)7(0.76H0.76L)6, and the second film stack is defined as 0.5(HL)(1.3H1.3L)9(HL)8, wherein, H represents a high refractive index layer having a base optical thickness equal to one fourth of a first reference wavelength associated with the optical filter, L represents a low refractive index layer having a base optical thickness equal to one fourth of a first reference wavelength associated with the optical filter, the expression enclosed in each parenthesis represents a filter cavity, and the superscript represents the number of repetition of the expression enclosed in that parenthesis.
Abstract:
An optical filter for screening out infrared and ultraviolet light includes a transparent substrate and a film stack formed on the substrate. The film stack includes a number of high refractive index layers and a number of low refractive index layers alternately stacked one on another. The film stack is represented as follows: (3.5H3.5L)7(2.5H2.5L)7(HL)6(0.76H0.76L)6, wherein, H represents a high refractive index layer having a base optical thickness equal to one fourth of a reference wavelength associated with the optical filter, L represents a low refractive index layer having a base optical thickness equal to one fourth of a reference wavelength associated with the optical filter, expressions enclosed in each parenthesis represent filter cavities, and superscripts represents the number of repetitions of the expression enclosed in that parenthesis.
Abstract:
An apparatus for manufacturing carbon nanotubes includes: a reaction chamber having an inlet at a bottom and an opposite outlet at a top thereof, and a substrate region configured for accommodating a substrate for growing carbon nanotubes thereon; an electric field generating device configured for generating an electric field around the substrate region, the electric field being substantially perpendicular to the substrate; and a magnetic field generating device configured for generating a magnetic field around the substrate region, the magnetic field being substantially perpendicular to the substrate.
Abstract:
An exemplary apparatus for washing one or more optical elements includes an upper portion (10) and a lower portion (20). The upper portion includes a plurality of upper washing holes (14) defined therein. The lower portion cooperates with the upper portion to form a washing chamber (30). The lower portion includes a plurality of lower washing holes (24) defined therein. The washing chamber is configured for holding the optical elements.
Abstract:
An optical element includes a substrate having a first surface and an opposite second surface; a first film stack formed on the first surface, having a plurality of first film layers with predetermined thickness or layer numbers; and a second film stack formed on the second surface, having a plurality of second film layers with same thickness or layer numbers to the first film layers. A method for manufacturing the optical element is also provided.
Abstract:
An induction charger assembly (3) is provided for an electronic device (4). The induction charger assembly includes an induction coil (311), a charger connector (35), and a magnetic element (313). The induction coil is configured to be hollow column in shape, and the induction coil has a first end and a second end. The charger connector electrically connects with the first and second ends of the induction coil. The charger connector is configured for electrically connecting with the electronic device to be charged. The magnetic element is received in the induction coil. The permanent magnet is movable in the induction coil for generating an induction current through the induction coil.
Abstract:
A rolling machine includes a first clipping component, a second clipping component, a lifting component, and a holding assembly. The first clipping component has a first surface and a second surface opposite to the first surface. The second clipping component has a third surface configured to contact the first surface and a fourth surface opposite to the third surface. The lifting component is connected to the first clipping component and configured to drive the first clipping component to move back and forth. The holding assembly has a first and second holders configured to be symmetrically positioned on both sides of the first clipping component.
Abstract:
An apparatus for manufacturing carbon nanotubes is provided. The apparatus includes: a reaction chamber having an inlet and a outlet; a heater for elevating an interior temperature of the reaction chamber; and a gas guiding member coupled to the inlet and configured for introducing a carbon-containing gas into the reaction chamber, the gas guiding member including a gas-exiting portion arranged in the reaction chamber, the gas-exiting portion having a cavity defined therein and a flat perforated top wall, the perforated top wall being configured for supporting a substrate thereon and defining a route allowing the introduced carbon-containing gas to flow in a direction substantially perpendicular to a main plane of the substrate.