摘要:
An explosive pellet for characterizing a fracture in a subterranean formation is provided. The pellet can include a casing having a detonation material and an explosive material disposed within the casing. The pellet can also include a nonexplosive material moveably disposed within the casing. Movement of the nonexplosive material can generate a predetermined amount of energy in the form of friction-generated heat sufficient to detonate the explosive material.
摘要:
An explosive pellet for characterizing a fracture in a subterranean formation is provided. The pellet can include a casing having a detonation material and an explosive material disposed within the casing. The pellet can also include a nonexplosive material moveably disposed within the casing. Movement of the nonexplosive material can generate a predetermined amount of energy in the form of friction-generated heat sufficient to detonate the explosive material.
摘要:
A shaped charge includes a casing; a liner located within an opening of the casing; and an explosive located in the region between the casing and the liner, wherein at least one of the liner and the explosive comprises an intermetallic mixture comprising boron and a reactant metal. The reactant metal is one selected from the group consisting of Ti, Mg, Zr, Mo, and a combination thereof. A method for perforating in a well includes positioning a perforating gun in the well, wherein the perforating gun includes a shaped charge that includes: a casing; a liner located within an opening of the casing; and an explosive located in the region between the casing and the liner, wherein at least one of the liner and the explosive includes an intermetallic mixture that contains boron and a reactant metal; and detonating the shaped charge in the well.
摘要:
A shaped charge includes a casing, a liner disposed within an opening of the casing and an explosive disposed between the casing and the liner. The liner is made of a metal powder blend that includes a spheroidized metal powder. The spheroidized metal powder includes a spheroidized tungsten powder. The metal powder blend may further include a binder and a lubricant. The binder includes copper or lead. The lubricant includes graphite.
摘要:
A shaped charge includes a casing; a liner located within an opening of the casing; and an explosive located in the region between the casing and the liner, wherein at least one of the liner and the explosive comprises an intermetallic mixture comprising boron and a reactant metal. The reactant metal is one selected from the group consisting of Ti, Mg, Zr, Mo, and a combination thereof. A method for perforating in a well includes positioning a perforating gun in the well, wherein the perforating gun includes a shaped charge that includes: a casing; a liner located within an opening of the casing; and an explosive located in the region between the casing and the liner, wherein at least one of the liner and the explosive includes an intermetallic mixture that contains boron and a reactant metal; and detonating the shaped charge in the well.
摘要:
A shaped charge includes a casing, a liner disposed within an opening of the casing and an explosive disposed between the casing and the liner. The liner is made of a metal powder blend that includes a spheroidized metal powder. The spheroidized metal powder includes a spheroidized tungsten powder. The metal powder blend may further include a binder and a lubricant. The binder includes copper or lead. The lubricant includes graphite.
摘要:
An initiator device, comprising an explosive foil initiator; an initiator shaped charge that is activated by the explosive foil initiator; the initiator shaped charge comprising an outer casing having an opening therein defining a volume, an explosive located inside the opening, the explosive defining a concave cavity therein; a metal liner lining the concave cavity; and a detonation cord that is activated by the initiator shaped charge.
摘要:
An initiator device, comprising an explosive foil initiator; an initiator shaped charge that is activated by the explosive foil initiator; the initiator shaped charge comprising an outer casing having an opening therein defining a volume, an explosive located inside the opening, the explosive defining a concave cavity therein; a metal liner lining the concave cavity; and a detonation cord that is activated by the initiator shaped charge.