摘要:
The present invention is related to location positioning systems, and more particularly, to a method and apparatus of synchronizing to data frames in a positioning system signal. According to one aspect, the invention speeds up the frame synchronization process by computing a frame synchronization metric for each satellite and then combining together the metrics for all tracked satellites together, after compensating for respective signal transit times. Then the invention makes a frame sync decision on the combined satellite metric. In embodiments, an optimal combining algorithm is used based on CNO of each satellite. According to further aspects, the invention further speeds up the frame synchronization process by predicting many bits in the subframe so that more bits are known in addition to the 8-bit preamble. For example, the invention recognizes that many bits in a subframe rarely change or don't change very often. Moreover, the invention uses old ephemeris used to predict new ephemeris parameters. These parameters are translated into predicted bits in the signal. Still further, old ephemeris can be used to predict almanac parameters, and the almanac can be used to predict ephemeris parameters.
摘要:
The present invention is related to location positioning systems, and more particularly, to a method and apparatus of synchronizing to data frames in a positioning system signal. According to one aspect, the invention speeds up the frame synchronization process by computing a frame synchronization metric for each satellite and then combining together the metrics for all tracked satellites together, after compensating for respective signal transit times. Then the invention makes a frame sync decision on the combined satellite metric. In embodiments, an optimal combining algorithm is used based on CNO of each satellite. According to further aspects, the invention further speeds up the frame synchronization process by predicting many bits in the subframe so that more bits are known in addition to the 8-bit preamble. For example, the invention recognizes that many bits in a subframe rarely change or don't change very often. Moreover, the invention uses old ephemeris used to predict new ephemeris parameters. These parameters are translated into predicted bits in the signal. Still further, old ephemeris can be used to predict almanac parameters, and the almanac can be used to predict ephemeris parameters.
摘要:
The present invention is related to location positioning systems, and more particularly, to a method and apparatus of synchronizing to data frames in a positioning system signal. According to one aspect, the invention speeds up the frame synchronization process by computing a frame synchronization metric for each satellite and then combining together the metrics for all tracked satellites together, after compensating for respective signal transit times. Then the invention makes a frame sync decision on the combined satellite metric. In embodiments, an optimal combining algorithm is used based on CNO of each satellite. According to further aspects, the invention further speeds up the frame synchronization process by predicting many bits in the subframe so that more bits are known in addition to the 8-bit preamble. For example, the invention recognizes that many bits in a subframe rarely change or don't change very often. Moreover, the invention uses old ephemeris used to predict new ephemeris parameters. These parameters are translated into predicted bits in the signal. Still further, old ephemeris can be used to predict almanac parameters, and the almanac can be used to predict ephemeris parameters.
摘要:
Systems and methods are disclosed herein for improving the sensitivity of satellite data decode in a satellite navigation receiver. The low signal ephemeris data decoding system of the present disclosure achieves a 5 db improvement in decoding sensitivity over conventional system by operating down to a CN0 of 21 dB-Hz. The improved sensitivity is achieved through a combination of reducing the number of data bits to be decoded, overcoming the inherent differential decoding problem of an all data bit polarity inversion, improving the probability of seeing single bit decoding error in an ephemeris word, running the parity correction algorithm, and reducing the undetected word error rate. The improved sensitivity makes it possible to predict the orbit of the satellite and to determine the receiver's location with higher accuracy even when operating in challenging signal conditions.
摘要:
Systems and methods are disclosed herein for improving the sensitivity of satellite data decode in a satellite navigation receiver. The low signal ephemeris data decoding system of the present disclosure achieves a 5 db improvement in decoding sensitivity over conventional system by operating down to a CN0 of 21 dB-Hz. The improved sensitivity is achieved through a combination of reducing the number of data bits to be decoded, overcoming the inherent differential decoding problem of an all data bit polarity inversion, improving the probability of seeing single bit decoding error in an ephemeris word, running the parity correction algorithm, and reducing the undetected word error rate. The improved sensitivity makes it possible to predict the orbit of the satellite and to determine the receiver's location with higher accuracy even when operating in challenging signal conditions.
摘要:
A method for detecting coherent interference includes the steps of: (a) receiving a signal at a first frequency, (b) forming a set of cross-correlation results by at least cross-correlating the signal with a first known code for a plurality of code offsets, (c) determining a statistical signature of the cross-correlation results, and (d) deciding, based on the statistical signature, whether non-negligible coherent interference is present within a search bin defined by the combination of the first frequency and the first known code.
摘要:
A global positioning satellite (GPS) receiver that includes a radio frequency (RF) receiver receiving a first GPS signal from a GPS satellite and a processor. The processor is configured to correlate the first GPS signal with a plurality of reference signals to produce a plurality of correlations, detect a transition between receiving the first GPS signal and receiving a second GPS signal from the GPS satellite based on a phase shift in the correlations, and if the transition is detected, compensate for the phase shift when computing a range to the GPS satellite.
摘要:
The present invention is related to location positioning systems, and more particularly, to a method and apparatus for making accuracy improvements to a GPS receiver's navigation calculations. According to a first aspect, the invention includes extreme sensitivity GNSS tracking loops. In embodiments, the tracking loops are self-bandwidth normalizing and the loop bandwidths automatically narrow with reduced CNO.
摘要:
A GPS Mobile Unit is described. The GPS Mobile Unit may include at least two antennas, at least two GPS receivers, and a position solution module in signal communication with the at least two GPS receivers.
摘要:
The present invention is related to location positioning systems, and more particularly, to a method and apparatus for making accuracy improvements to a GPS receiver's navigation calculations. According to a first aspect, the invention provides an extreme sensitivity GNSS tracking architecture. According to other aspects, the architecture includes multiple loops per channel, with the loops implemented with hardware and/or software. According to still further aspects, the architecture includes a multi-level lock detection algorithm designed to provide a trade-off between sensitivity and speed that is not possible with existing tracking architectures.