Abstract:
Electrical enclosure including circuit breaker, exterior panels defining a volume, wall separating compartments defined in the volume, and cooling channel component. Cooling channel component includes first plate coupled to wall. First plate includes first end and a second opposite end coupled to wall, the first plate covering an opening defined in wall and having a first aperture defined therethrough, first aperture having a first shape and a first orientation. Cooling channel component also includes electrically conductive second plate coupled to first plate and having a first end coupled to first plate first end and a second opposite end coupled to first plate second end, the second plate having at least one second aperture defined therethrough, the second aperture having a second shape and a second orientation, where a hollow cavity is defined between the first and second plates, and where the first and second apertures are arranged in a non-overlapping configuration.
Abstract:
A pressure relief system for an electrical housing includes at least one wall having a first surface defining, at least in part, a compartment, and a second surface defining, at least in part, a ventilation passage. The at least one wall includes an opening fluidically connecting the compartment and the ventilation passage. The pressure relief system includes a closure mounted to the at least one wall at the opening. The closure is selectively moveable between a closed position and an open position. A biasing member is coupled to the closure. The biasing member is operative to bias the closure to the closed position and, in response to a pressure wave within the compartment, allow the closure to move to the open position. The biasing member is further operative to bias the closure to the closed position after at least a portion of the pressure wave has passed from the compartment.
Abstract:
A shutter interlock device for an electrical enclosure includes a shutter link defining a lock slot, an actuating member rotatably coupled to the electrical enclosure, and a sliding link. The sliding link includes a first end coupled to the actuating member, a second end opposite the first end, and a pin coupled to the second end, where a rotation of the actuating member causes the pin to selectively disengage the lock slot.
Abstract:
A shutter interlock device for an electrical enclosure includes a shutter link defining a lock slot, an actuating member rotatably coupled to the electrical enclosure, and a sliding link. The sliding link includes a first end coupled to the actuating member, a second end opposite the first end, and a pin coupled to the second end, where a rotation of the actuating member causes the pin to selectively disengage the lock slot.
Abstract:
A fixed contact for joining a bus bar and a sliding contact of an electrical switchgear is provided. The fixed contact includes a plurality of circumferential segments operatively coupled to each other. The fixed contact also includes an axial extent extending along a longitudinal axis of the fixed contact from a first end of the fixed contact to a second end of the fixed contact, the axial extent comprising a mounting region, a central region and a sliding contact engagement region. The mounting region extends axially from the first end of the fixed contact to the central region, the mounting region configured to be operatively coupled to the bus bar. The sliding contact engagement region extends axially from the central region to the second end of the fixed contact, the sliding contact region configured to be slidably engaged with a sliding contact.
Abstract:
Electrical enclosure including circuit breaker, exterior panels defining a volume, wall separating compartments defined in the volume, and cooling channel component. Cooling channel component includes first plate coupled to wall. First plate includes first end and a second opposite end coupled to wall, the first plate covering an opening defined in wall and having a first aperture defined therethrough, first aperture having a first shape and a first orientation. Cooling channel component also includes electrically conductive second plate coupled to first plate and having a first end coupled to first plate first end and a second opposite end coupled to first plate second end, the second plate having at least one second aperture defined therethrough, the second aperture having a second shape and a second orientation, where a hollow cavity is defined between the first and second plates, and where the first and second apertures are arranged in a non-overlapping configuration.
Abstract:
A switchgear enclosure includes an exterior housing. A plurality of compartments within the exterior housing includes at least a first switching device compartment, a bus compartment, and a first cable compartment. A plurality of interior partitions arranged to subdivide the exterior housing into the plurality of compartments includes at least a first partition between the first switching device compartment and the first cable compartment, and a second partition between the bus compartment and the first cable compartment. An exhaust system includes a vent path structure arranged within the exterior housing to at least partially surround the bus compartment and the first cable compartment, a channel formed between the vent path structure and the exterior housing, and a first vent device in the first partition. The first vent device is configured to fluidically connect the first switching device compartment to the channel via the vent path structure.
Abstract:
A fixed contact for joining a bus bar and a sliding contact of an electrical switchgear is provided. The fixed contact includes a plurality of circumferential segments operatively coupled to each other. The fixed contact also includes an axial extent extending along a longitudinal axis of the fixed contact from a first end of the fixed contact to a second end of the fixed contact, the axial extent comprising a mounting region, a central region and a sliding contact engagement region. The mounting region extends axially from the first end of the fixed contact to the central region, the mounting region configured to be operatively coupled to the bus bar. The sliding contact engagement region extends axially from the central region to the second end of the fixed contact, the sliding contact region configured to be slidably engaged with a sliding contact.