Abstract:
A spar cap for a rotor blade of a wind turbine is disclosed. The rotor blade includes a blade root and a blade tip, leading and trailing edges, pressure and suction sides, and at least one spar cap configured on an internal surface of either or both the pressure or suction sides. The spar cap includes one or more layers of a first material and a second conductive material contacting at least one of the layers of the first material. Further, the conductive material is different than the first material. Thus, the conductive material is configured with the first material so as to create an equipotential spar cap.
Abstract:
Root assemblies for rotor blades include a root portion having an inner surface and an outer surface, wherein the root portion is configured to extend from an airfoil portion of the rotor blade. The root assemblies further include at least one external structural connection support connected to at least the inner surface or the outer surface of the root portion, wherein the at least one external structural connection support connects to a hub of a wind turbine to facilitate the connection of the rotor blade.
Abstract:
The present disclosure is directed to a lightning protection system for a wind turbine rotor blade. The lightning protection system includes a lightning conductive circuit having at least one electrical conductor and at least one semiconductor. The semiconductor is configured for placement at a blade root of the rotor blade. Further, the electrical conductor is configured to electrically couple a blade tip of the rotor blade to a ground conductor. In addition, the electrical conductor is configured to electrically couple the semiconductor between one or more spar caps located on either or both of the pressure or suction sides at the blade root and the ground conductor.
Abstract:
The present disclosure is directed to a lightning protection system for a wind turbine rotor blade. The lightning protection system includes a lightning conductive circuit having at least one electrical conductor and at least one semiconductor. The semiconductor is configured for placement at a blade root of the rotor blade. Further, the electrical conductor is configured to electrically couple a blade tip of the rotor blade to a ground conductor. In addition, the electrical conductor is configured to electrically couple the semiconductor between one or more spar caps located on either or both of the pressure or suction sides at the blade root and the ground conductor.
Abstract:
A spar cap for a rotor blade of a wind turbine is disclosed. The rotor blade includes a blade root and a blade tip, leading and trailing edges, pressure and suction sides, and at least one spar cap configured on an internal surface of either or both the pressure or suction sides. The spar cap includes one or more layers of a first material and a second conductive material contacting at least one of the layers of the first material. Further, the conductive material is different than the first material. Thus, the conductive material is configured with the first material so as to create an equipotential spar cap.