Abstract:
A radiation detector head assembly is provided that includes a detector housing, a detector unit, and a fastener. The detector housing defines a cavity therein, and includes a shielding body disposed at least partially around the cavity. The detector unit is disposed within the cavity, and includes an absorption member and associated processing circuitry. The processing circuitry is configured to generate electronic signals responsive to radiation received by the absorption member. The fastener extends through the detector housing, and is accepted by the detector unit to secure the detector unit to the detector housing. The shielding body of the detector housing is interposed between the fastener and the processing circuitry.
Abstract:
A detector arm assembly is provided that includes a stator, a detector head, a radial motion motor, and a detector head belt. The stator is configured to be fixedly coupled to a gantry having a bore. The detector head includes a carrier section that is slidably coupled to the stator and configured to be movable in a radial direction in the bore relative to the stator. The radial motion motor is operably coupled to at least one of the detector head or the stator. The detector head belt is operably coupled to the radial motion motor and the carrier section. Rotation of the radial motion motor causes movement of the detector head in the radial direction.
Abstract:
A radiation detector head assembly is provided that includes a detector housing and a rotor assembly. The detector housing defines a cavity therein. The rotor assembly includes a detector unit, a body, and a sealing member. The body defines an opening oriented in the imaging direction. The body is disposed at a distance from the detector housing within the cavity defining a passageway extending axially along the body. The sealing member includes a body extending across the opening. The sealing member is coupled to at least one of the shielding unit or the collimator, and is mounted within the cavity to provide a gas-tight seal along the imaging direction between the passageway and the detector unit.
Abstract:
A gantry system is provided. The gantry system may be used for acquiring image data and reconstructing the image data into output images. Image detectors include a detector arm and detector head. Image detectors are attached to a gantry in a compact configuration such that the image detector head may extend into the bore of a stator. The system can be a Nuclear Medicine (NM) imaging system to acquire Single Photon Emission Computed Tomography (SPECT) image information.
Abstract:
A detector arm assembly is provided that includes a stator, a detector head, a radial motion motor, and a detector head belt. The stator is configured to be fixedly coupled to a gantry having a bore. The detector head includes a carrier section that is slidably coupled to the stator and configured to be movable in a radial direction in the bore relative to the stator. The radial motion motor is operably coupled to at least one of the detector head or the stator. The detector head belt is operably coupled to the radial motion motor and the carrier section. Rotation of the radial motion motor causes movement of the detector head in the radial direction.
Abstract:
A radiation detector head assembly is provided that includes a detector housing and a rotor assembly. The detector housing defines a cavity therein. The rotor assembly includes a detector unit, a body, and a sealing member. The body defines an opening oriented in the imaging direction. The body is disposed at a distance from the detector housing within the cavity defining a passageway extending axially along the body. The sealing member includes a body extending across the opening. The sealing member is coupled to at least one of the shielding unit or the collimator, and is mounted within the cavity to provide a gas-tight seal along the imaging direction between the passageway and the detector unit.
Abstract:
A radiation detector head assembly is provided that includes a detector housing and a rotor assembly. The detector housing defines a cavity therein. The rotor assembly includes a detector unit, a body, and a sealing member. The body defines an opening oriented in the imaging direction. The body is disposed at a distance from the detector housing within the cavity defining a passageway extending axially along the body. The sealing member includes a body extending across the opening. The sealing member is coupled to at least one of the shielding unit or the collimator, and is mounted within the cavity to provide a gas-tight seal along the imaging direction between the passageway and the detector unit.
Abstract:
Nuclear medicine (NM) imaging system includes a detector assembly coupled to a gantry. The NM imaging system also includes a positioning sub-system having a motion controller and a detector motor. The positioning sub-system also includes a proximity sensor device (PSD) coupled to a detector head of the detector assembly. The PSD is configured to be activated. In response to being activated, the PSD is configured to transmit an output signal to stop the detector motor from moving the detector head toward the object. The NM imaging system also includes a secondary circuit that, in response to the PSD being activated, is configured to determine whether the detector head has stopped moving toward the object and, if the detector head has not stopped moving toward the object, is configured to disable the detector motor.
Abstract:
A radiation detector head assembly is provided that includes a detector housing, a detector unit, and a fastener. The detector housing defines a cavity therein, and includes a shielding body disposed at least partially around the cavity. The detector unit is disposed within the cavity, and includes an absorption member and associated processing circuitry. The processing circuitry is configured to generate electronic signals responsive to radiation received by the absorption member. The fastener extends through the detector housing, and is accepted by the detector unit to secure the detector unit to the detector housing. The shielding body of the detector housing is interposed between the fastener and the processing circuitry.
Abstract:
A radiation detector head assembly is provided that includes a detector housing and a rotor assembly. The detector housing defines a cavity therein. The rotor assembly includes a detector unit, a body, and a sealing member. The body defines an opening oriented in the imaging direction. The body is disposed at a distance from the detector housing within the cavity defining a passageway extending axially along the body. The sealing member includes a body extending across the opening. The sealing member is coupled to at least one of the shielding unit or the collimator, and is mounted within the cavity to provide a gas-tight seal along the imaging direction between the passageway and the detector unit.