摘要:
A system comprises a first peer sensor tag configured to sense first sensor data using a first local sensor of the first peer sensor tag and a second peer sensor tag configured to sense second sensor data using a second local sensor of the second peer sensor tag while the second peer sensor tag is not within a communication range of the first peer sensor tag. The second peer sensor tag is configured to detect a first beacon signal of the first peer sensor tag, the first beacon signal including at least a portion of the first sensor data, the first beacon signal being transmitted according to a first network communication protocol. The second peer sensor tag is configured to obtain the at least a portion of the first sensor data from the first beacon signal. A base station is configured to detect a second beacon signal of the second peer sensor tag, the first beacon signal including the at least a portion of the first sensor data and at least a portion of the second sensor data. The base station is configured to obtain the at least a portion of the first sensor data and the at least a portion of the second sensor data from the second beacon signal, and to provide the at least a portion of the first sensor data and the at least a portion of the second sensor data to a server system using a second network communication protocol different from the first network communication protocol.
摘要:
One embodiment of the present invention sets forth a technique for efficiently interconnecting RFID interrogator elements. Each interrogator element is configured to function as both an RFID interrogator and an RFID tag. The RFID interrogator function enables one interrogator element to perform a read or write data operation to a second interrogator element functioning as an RFID tag. Two-way communications between interrogator elements is facilitated by read and write operations. A data backhaul network may be advantageously implemented as a wireless mesh network, comprising a plurality of interrogator elements, to transmit data from each interrogator element to a server for processing.
摘要:
A large data file is distributed to a number of nodes in a data communication network by a process of distributed downloading. Destination nodes are informed of the location in the network of the large data file and are directed to receive the large data file by requesting that blocks of data containing the file be transmitted to them from the designated source node. The destination nodes control the file transfer. The large data file may contain program code for updating network software.
摘要:
One embodiment of the present invention sets forth a technique for transmitting data in a frequency hopping spread spectrum (FHSS) wireless communication system. A multi-channel receiver is configured to receive data from one or more channels simultaneously. The multi-channel receiver enables efficient implementation of a transmission protocol in which multiple candidate nodes within a wireless mesh network are polled for availability to receive a packet of data. The packet of data is transmitted to one or more available nodes based on prevailing link conditions, thereby increasing the likelihood of successful delivery. Data flooding may be selectively implemented to further increase the likelihood of successful delivery.
摘要:
A microcellular digital packet communication system is provided for digital communication having a plurality of repeating packet-mode fixed-site transceivers each being at a plurality of different sites and each being capable of communicating on mutually-common frequencies, including for example by means of frequency-hopping spread spectrum, wherein a terminal transceiver directly communicates substantially simultaneously with at least a few of the fixed-site transceivers on the mutually-common frequencies and distributes information packets of a single originating message among the fixed-site transceivers, the fixed-site transceivers forwarding the information packets via multiple communication links to a single destination terminal on the mutually-common frequencies at which the message is reassembled. The system enables reliable handoffs and robust connectivity by maintaining multiple simultaneous communication links between terminal transceivers and repeating transceivers.
摘要:
In a packet communication system wherein stationary nodes are assigned an absolute coordinate-based address, the addressing of roaming nodes is accomplished by parasitically adopting a coordinate routing scheme used for addressing stationary nodes. Each roaming node selects a parent stationary node with which the roaming node can communicate directly. During the course of network operation, the roaming node may select a new parent node. At the time of reassignment, the coordinates of the new parent node, along with the identity of the roaming node, is recorded at the former parent node. Forwarding of packets to stationary nodes is accomplished according to a known coordinate-based routing scheme. A packet addressed to a destination roaming node is forwarded and directed through the then current stationary parent node. The packet is then forwarded to the destination roaming node.
摘要:
In a mesh communication network, a poll request protocol (PRP) is provided in which a special packet is broadcast by the congested node when it is ready to provide services. The controlling node (usually the more congested node) broadcasts a packet to request poll signals from nodes desiring resources of the controlling node. The contending nodes then have equal chances to request the services of the controlling node by sending poll signals. The controlling node can then arbitrate the requests, determine the most fair and efficient use of its resources, and broadcast a scheduling packet to inform the contending nodes when to inform the contending nodes of controlling node scheduling. The contending nodes then send their packets to the controlling node without lost packets caused by congestion collisions. The controlling node can then send data to the contending nodes also without lost packets.
摘要:
In a radio based wireless mesh packet network wherein packet traffic is scheduled between a high capacity communications link and a plurality of nodes interconnected by wireless links, an access unit is provided at a first node having a plurality of radios coupled to the high capacity link and wherein each of the plurality of radios is capable of detecting a polling of the access unit by other nodes. A poll is sent from a second node to the access unit at the first node on a first channel. Reports of receipt of the poll are shared among the plurality of radios. An acknowledgment is sent on behalf of the access unit from only one of the plurality of radios to the polling node, and further communication is conducted between the one of the plurality of radios and the node on a second channel.
摘要:
In a packet communication system, loose source routing is employed to permit communication over networks of disparate types, including geographic and path-unaware types. No information resides on a wired access point (WAP). All of the intelligence of the system resides in Name Servers, which provide opaque addresses that end nodes (radios) in a wireless cloud can use to send packets to other end nodes (radios) in other wireless clouds. (A cloud is the set of radios serviced by a particular WAP.) According to the invention, the method employs an ordered list called a path and the network address of a packet consists of such an ordered list of addresses with a "marker" that flags the current destination of the packet and a "direction bit" that tells which direction on the list the next destination is. Each address in the path is type-length-value (TLV) encoded. The address has preferably a 4 bit "type" field, followed by a 4 bit "length" field (indicating length in words) of the value, and then the actual "value" of the address. Each address describes a "place" that the packet must "visit." These "places" may be areas which a packet must traverse, and not necessarily actual node addresses.
摘要:
In a mesh communication network, new network nodes acquire information about nearby nodes to which they may communicate through a third-party query whereby an established node with which a new node can communicate is queried to provide a list of nodes in the vicinity of the new nodes with which the new node is likely to be able to communicate. The new node uses this list in attempting to establish communication links and then repeats the third-party query for each node in the list to which it can communicate.