摘要:
Hyperthermia has been applied by, for example, separate ultrasound transducers, RF or microwave transmitters and heated fluids. Imaging by separate MRI imaging coils is usually used to view the anatomical region under treatment. Separate temperature probes (needles, catheters) are often used to monitor tissue temperature. Control of the temperature profile required for effective hyperthermia treatment is usually done by trial and error, involving a human operator. The present invention combines all of these capabilities into a single device, which is MRI compatible and safe. It also allows for automatic control of the RF energy to achieve a prescribed tissue hyperthermia.
摘要:
An intracavity probe for use with an MR system allows images and spectra of internal anatomical structures to be obtained. The intracavity probe houses within its balloon-type enclosure a single-element quadrature coil sensitive to both the vertical and horizontal components of the MR signal. The quadrature coil by means of its output line is designed to plug into a dedicated interface device with which to interface the quadrature coil with the MR system. Drive capacitors within the coil in conjunction with the electrical length of the output line and phase shifting networks within the interface device enable complete decoupling of the quadrature coil from the transmit fields generated by the MR system. Preamplifier, power splitting and combining networks within the interface device process voltage signals representative of the horizontal and vertical components of the MR signal and enable them to be conveyed to the input port(s) of the MR system.
摘要:
An MR system features an intracavity probe and associated interface device. The probe includes a shaft, a balloon at one end thereof, and a coil loop within the balloon. The loop has two drive capacitors and a tuning capacitor, all of which in series. A junction node between the drive capacitors serves as a ground for electrically balancing the loop. Diametrically opposite the node, the tuning capacitor enables the loop to resonate at the operating frequency of the MR system. The interface allows the MR system to couple the loop to a port of the MR system during a receive cycle thereof and decouple it from the port during a transmit cycle thereof. With its balloon inserted and inflated within a cavity of a patient, the probe allows the MR system to generate images and/or spectra of the region of interest using the MR signals received by the loop.
摘要:
A birdcage coil for use with a magnetic resonance (MR) system comprises a first ring at one thereof, a second ring at the other end thereof, and a plurality of rods electrically interconnecting the first and second rings. The first ring is electrically conductive and has a first diameter. The second ring is electrically conductive and has a second diameter. The rods and first and second rings are configured to form about the birdcage coil a plurality of partially-overlapped primary resonant substructures. Each primary resonant substructure includes two of the rods and the corresponding sections of the first and second rings interconnecting them.
摘要:
An insertable pickup probe and interface network for magnetic resonance imaging and spectroscopy. The pickup probe in the preferred embodiment is for use in imaging the male prostate and comprises an elongated shaft supporting a patient interface balloon at its distal end which contains a RF receiving coil. The interface balloon comprises an inflatable inner balloon enclosed by a flexible outer balloon. The receiving coil is positioned between the inner and outer balloons and placed intimately adjacent the region of interest by inflating the inner balloon to expand outwardly against the outer balloon. In addition, a non-stretchable planar material is provided on the surface on the inner balloon adjacent the receiving coil for ensuring that the receiving coil is placed adjacent the region of interest. The inner balloon is inflated by an inflator cuff connected to the shaft and communicated to the inner balloon by a first lumen in the shaft. The receiving coil is electrically connected to an interconnecting cable which is connected to the proximal end of the shaft and communicated to the receiving coil by a second lumen in the shaft.
摘要:
A coil interface allows a neurovascular coil system to be coupled to a magnetic resonance (MR) system. The neurovascular coil system has an array of coils including a birdcage coil, a spine coil, and at least one neck coil, with the MR system being equipped with a number of receivers. The coil interface includes a plurality of input ports, a plurality of output ports, and an interface circuit. The plurality of input ports are for coupling to the coils of the neurovascular coil system, and the plurality of output ports for coupling to the receivers of the MR system. The interface circuit enables the input ports and output ports to be selectively interconnected, and thereby enables the neurovascular coil system to be selectively operated in (I) a neurovascular mode; (II) a high resolution brain mode; (III) a high speed brain mode; and (IV) a volume neck mode.
摘要:
A magnetic resonance imaging receiver/transmitter coil system for providing images for regions of interest includes a first phased array formed of a plurality of electrically conductive members and defining an array volume and a second phased array formed of a second plurality of electrically conductive members and disposed at least partially within the defined array volume. At least one of the first and second phased arrays is adapted to apply a magnetic field to the defined array volume. At least one of the first and second phased arrays is further adapted to receive said applied magnetic field. The first phased array is extendible to define a further array volume and is provided with a switch for electrically coupling and decoupling an extension to effectively extend the length of the first phased array and thereby define the further array volume. In this manner the length of the first phased array is effectively extended to approximately twice its unextended length.
摘要:
A magnetic resonance imaging receiver/transmitter coil system for providing images for regions of interest includes a first phased array formed of a plurality of electrically conductive members and defining an array volume and a second phased array formed of a second plurality of electrically conductive members and disposed at least partially within the defined array volume. At least one of the first and second phased arrays is adapted to apply a magnetic field to the defined array volume. At least one of the first and second phased arrays is further adapted to receive said applied magnetic field. The first phased array is extendible to define a further array volume and is provided with a switch for electrically coupling and decoupling an extension to effectively extend the length of the first phased array and thereby define the further array volume. In this manner the length of the first phased array is effectively extended to approximately twice its unextended length.
摘要:
A quadrature coil with a unique arrangement of vertical and horizonal mode coils allows for superior magnetic resonance imaging and spectroscopy through higher sensitivity and more uniform imaging over the region from the head to the crest of the aortic arch. The coil has vertical-mode conductors at approximately 30.degree., 150.degree., 210.degree.and 330.degree.with respect to a longitudinal axis, and horizontal-mode conductors at 90.degree.and 270.degree.. The horizontal-mode conductors are connected at the far end of the coil at an electrical midpoint of the horizontal-mode conductors, such that a voltage null will exist there when the coil is operated in vertical mode. The vertical and horizontal mode feedpoints are located at a head end of the coil, which is hinged into halves to permit easy access by and to a patient.
摘要:
An insertable pickup probe and interface network for magnetic resonance imaging and spectroscopy. The pickup probe in the preferred embodiment is for use in imaging the male prostate and comprises an elongated shaft supporting a patient interface balloon at its distal end which contains a RF receiving coil. The interface balloon comprises an inflatabe inner balloon enclosed by a flexible outer balloon. The receiving coil is positioned between the inner and outer balloons and placed intimately adjacent the region of interest by inflating the inner balloon to expand outwardly against the outer balloon. In addition, a non-stretchable planar material is provided on the surface on the inner balloon adjacent the receiving coil for ensuring that the receiving coil is placed adjacent the region of interest. The inner balloon is inflated by an inflator cuff connected to the shaft and communicated to the inner balloon by a first lumen in the shaft. The receiving coil is electrically connected to an interconnecting cable which is connected to the proximal end of the shaft and communicated to the receiving coil by a second lumen in the shaft. An interface network is also provided which receives the interconnecting cable of the pickup probe and includes impedance matching means, tuning means, and decoupling means for interfacing the probe with a magnetic resonance imaging scanner. In addition, the interface includes an electronic circuit for automatically adjusting the control voltage of a varactor diode in a Pi network which comprises the tuning means.