摘要:
Magnet (12) creates a main magnetic field along a z-axis through an image region. A localized coil (D) is disposed in the image region at least to receive magnetic resonance signals from nuclei of the subject which have been induced to resonance. The localized coil includes an inner conductor (30), an outer conductor (32), and a dielectric material (52) therebetween. The outer conductor defines a gap (50) midway between its ends. One end of the inner conductor is connected with a gate of an FET transistor (66) and the outer conductor is connected with its source. The transistor source and drain are connected by a coaxial transmission cable (38) with a DC power supply (70) which provides a DC bias across the transistor source and drain. The cable also connects the transistor with a radio frequency receiver (40) to convey preamplified magnetic resonance signals thereto. The other end of the inner conductor may be connected with the outer conductor to provide an unbalanced localized coil or the ends may each be connected with an FET transistor (66a, 66 b) in a balanced coil arrangement (FIG. 9).
摘要:
A magnetic resonance imager includes a quadrature coil assembly (20) for transmitting radio frequency signals into and receiving magnetic resonance signal from an examination region. The quadrature coils assembly includes a first coil (22) and a second coil (24). A shunt path (32, 64, 74, 84, 94, 98, 100, 112, 114, 122) provides a current path by shunting at least a portion of one of the coils. A variable impedance (34, 66, 76, 86, 96, 110, 120) adjusts the amount of current flow through the shunt path and the current flow through the bypassed coil portion. More specifically, adjusting the impedance changes the magnetization vector generated by the coil assembly in a transmit mode and adjusts their relative isolation in a receive mode. The quadrature coils are mounted such that they are offset by about, but not quite, 90.degree.. The variable impedance is adjusted until the offset is brought precisely to 90.degree.. In this manner, the quadrature coils are adjusted electronically after assembly to insure the precision of their isolation.
摘要:
Magnets (12) create a main magnetic field along a z-axis through an image region. A localized coil (D) is disposed in the image region at least to receive magnetic resonance signals from nuclei of the subject which have been induced to resonance. The localized coil includes an inner conductor (30), preferably a plate, which defines a current path extending along the z-axis. The inner conductor is mounted closely adjacent and parallel to a surface of the subject. An outer conductor (32), preferably also a plate, is mounted parallel to but further from the subject than the first conductor. A connecting member (34) interconnects a first end of the inner and outer conductors and is disposed perpendicular to the z-axis. A matching circuit (36) including capacitors (50) which define the resonant frequency of the coil are connected adjacent second ends of the inner and outer conductors. Because the nuclei induced to resonance within the z-axis magnetic field generate magnetic resonance components in the x-y plane, an optimal coupling is achieved to reception of the magnetic resonance signals.
摘要:
A nuclear magnetic resonance radio frequency coil. The disclosed coil provides high frequency resonance signals for perturbing a magnetic field within the coil. The coil is impedance matched and tuned with adjustable capacitors. A balanced configuration is achieved with a co-axial cable chosen to phase shift an energization signal coupled to the coil. The preferred coil is a thin metallic foil having a shorting conductor, four wing conductors, and uniquely shaped parallel cross conductors connecting the shorting and wing conductors. When mounted to an rf transmissive plastic substrate and energized the coil produces a homogenous field within a region of interest the size of a patient head. A semicircular balanced feedbar arrangement is used to minimize undesired field contributions.
摘要:
A resonance exciting coil (C) excites magnetic resonance in nuclei disposed in an image region in which a main magnetic field and transverse gradients have been produced. A flexible receiving coil (D) includes a flexible plastic sheet (40) on which one or more loops (20) are adhered to receive signals from the resonating nuclei. Velcro straps (46) strap the flexible sheet and the attached coil into close conformity with the surface of the portion of the patient to be imaged. An impedance matching or coil resonant frequency adjusting network (50) is mounted on the flexible sheet for selectively adjusting at least one of an impedance match and the peak sensitivity resonant frequency of the receiving coil. A preamplifier (52) amplifies the received signals prior to transmission on a cable (24). A selectively variable voltage source (70) applies a selectively adjustable DC bias voltage to the cable for selectively adjusting at least one of the impedance match and the LC resonant frequency of the receiving coil. The received signals are amplified by an amplifier (82) and processed by an image processor (30) to form man-readable images of the examined region of the patient for display on a video display (32) or the like.
摘要:
A nuclear magnetic resonance radio frequency coil. The disclosed coil provides high frequency resonance signals for perturbing a magnetic field within the coil. The coil is impedance matched and tuned with adjustable capacitors. A balanced configuration is achieved with a co-axial cable chosen to phase shift an energization signal coupled to the coil. The preferred coil is a thin metallic foil having a shorting conductor, four wing conductors, and uniquely shaped parallel cross conductors connecting the shorting and wing conductors. When mounted to a rf transmissive plastic substrate and energized the coil produces a homogeneous field within a region of interest the size of a patient head. A semicircular balanced feedbar arrangement is used to minimize undesired field contributions.
摘要:
A resonance exciting coil (C) excites magnetic resonance in nuclei disposed in an image region in which a main magnetic field and transverse gradients have been produced. A flexible receiving coil (D) includes a flexible plastic sheet (40) on which one or more loops (20) are adhered to receive signals from the resonating nuclei. Velcro straps (46) strap the flexible sheet and the attached coil into close conformity with the surface of the portion of the patient to be imaged. An impedance matching or coil resonant frequency adjusting network (50) is mounted on the flexible sheet for selectively adjusting at least one of an impedance match and the peak sensitivity resonant frequency of the receiving coil. A preamplifier (52) amplifies the received signals prior to transmission on a cable (24). A selectively variable voltage source (70) applies a selectively adjustable DC bias voltage to the cable for selectively adjusting at least one of the impedance match and the LC resonant frequency of the receiving coil. The received signals are amplified by an amplifier (82) and processed by an image processor (30) to form man-readable images of the examined region of the patient for display on a video display (32) or the like.
摘要:
A magnetic field control (A) causes a magnetic field through an imaging region of a magnetic resonance spectrometer. A radio frequency generator (20) generates radio frequency signals which are transmitted on a transmission line (22) to a probe coil (C). Magnetic resonance signals received by the probe coil (C) are conveyed over the transmission line to a radio frequency receiver (24) for reconstruction into a magnetic resonance image. An inductive matching network (D) is connected between the probe coil and the transmission line for matching the resistive impedance of the coil with the resistive impedance of the transmission line and for resonating the coil at a frequency other than its self resonance frequency. When the probe coil is operated above the self resonance frequency, it is capacitively reactive. An inductor (40) is connected across coil feed points (30, 32) of the probe coil. The inductive reactance of the matching inductor is selected such that the capacitive reactance of the probe coil at a selected frequency above the self resonance frequency is cancelled.
摘要:
A resonator coil assembly (32) includes a dielectric sleeve (40) on which a first resonator coil portion (42) and a second resonator coil portion (44), each of copper foil, are adhered. The dielectric sleeve is dimensioned to receive a human torso therein and in one embodiment (FIG. 1) is circular in cross section and in another (FIG. 4) is elliptical in cross section. A pair of adjustable tuning capacitances (64, 66) and a pair of adjustable matching capacitances (68, 70) are interconnected between one end of the each coil portion and a metal bore liner (54). An opposite end of the coil portions are capacitively coupled to each other (FIG. 1) or to the bore liner (FIG. 3). A half wave length cable (72) interconnects the junctions between the first and second tuning and matching capacitances. One of these junctions is connected by a cable (74) with a radio frequency generator (30) and a radio receiver (34).
摘要:
An intracavity probe for use with an MR system allows images and spectra of internal anatomical structures to be obtained. The intracavity probe houses within its balloon-type enclosure a single-element quadrature coil sensitive to both the vertical and horizontal components of the MR signal. The quadrature coil by means of its output line is designed to plug into a dedicated interface device with which to interface the quadrature coil with the MR system. Drive capacitors within the coil in conjunction with the electrical length of the output line and phase shifting networks within the interface device enable complete decoupling of the quadrature coil from the transmit fields generated by the MR system. Preamplifier, power splitting and combining networks within the interface device process voltage signals representative of the horizontal and vertical components of the MR signal and enable them to be conveyed to the input port(s) of the MR system.