-
公开(公告)号:US20220162403A1
公开(公告)日:2022-05-26
申请号:US17601863
申请日:2020-04-17
摘要: In a method of making a material, a bismaleimide system is heated to generate a bismaleimide liquid (110). The bismaleimide liquid is degassed (114) to generate a degassed bismaleimide liquid. At least one of high speed shear mixing and probe sonication is performed to the degassed bismaleimide liquid to generate a highly mixed bismaleimide liquid phase (112). The highly mixed bismaleimide liquid phase is cured (116). A bismaleimide product is made by heating a three component bismaleimide system to generate a bismaleimide liquid, which is degassed in a 30 mbar vacuum until no new visually perceptible bubbles are detected. The degassed liquid is high speed shear mixed at a speed of 3500 RPM for 10 minutes to generate a highly mixed bismaleimide liquid phase, which is cured to make the bismaleimide product. A substance includes cured bismaleimide having an impact strength in a range of 56 kJ/m2 to 82 kJ/m2.
-
公开(公告)号:US20190002648A1
公开(公告)日:2019-01-03
申请号:US16066499
申请日:2016-12-02
IPC分类号: C08J3/20 , C08J3/22 , C08L23/12 , C08K3/04 , C01B32/174
摘要: A method of making a HIPP composite comprising blending polypropylene-coated functionalized multiwall carbon nanotubes (PP/f-MWNT) with a first PP to produce a PP and PP/f-MWNT mixture, wherein PP/f-MWNT comprise f-MWNT coated with a second PP via non-covalent interactions, wherein PP and PP/f-MWNT mixture comprises 0.0005 to 5 wt. % f-MWNT, based on the weight of PP and PP/f-MWNT mixture, wherein the first PP and the second PP are the same or different; melt blending the PP and PP/f-MWNT mixture to form a molten PP and PP/f-MWNT mixture; and shaping the molten PP and PP/f-MWNT mixture to form the HIPP composite. A HIPP composite comprising a continuous polymeric phase having dispersed therein a plurality of PP/f-MWNT, wherein the continuous polymeric phase comprises a first PP, wherein PP/f-MWNT comprise f-MWNT coated with a second PP via non-covalent interactions, wherein HIPP composite comprises 0.0005 to 5 wt. % f-MWNT, based on the weight of HIPP.
-