摘要:
Fluid distribution determination and optimization using real time temperature measurements. A method of determining fluid or flow rate distribution along a wellbore includes the steps of: monitoring a temperature distribution along the wellbore in real time; and determining in real time the fluid or flow rate distribution along the wellbore using the temperature distribution. A method of optimizing fluid or flow rate distribution includes the steps of: predicting in real time the fluid or flow rate distribution along the wellbore; comparing the predicted fluid or flow rate distribution to a desired fluid or flow rate distribution; and modifying aspects of a wellbore operation in real time as needed to minimize any deviations between the predicted and desired fluid or flow rate distributions.
摘要:
Tracking fluid displacement along a wellbore using real time temperature measurements. A method of tracking fluid displacement along a wellbore includes the steps of: monitoring temperature in real time in the wellbore; and observing in real time a variation in temperature gradient between fluid compositions in the wellbore. Another method of tracking fluid displacement along a wellbore includes the steps of: monitoring temperature along the wellbore; and observing a variation in temperature gradient due to a chemical reaction in the wellbore. Another method includes the step of causing a variation in temperature gradient in the fluid while the fluid flows in the wellbore.
摘要:
Tracking fluid displacement along a wellbore using real time temperature measurements. A method of tracking fluid displacement along a wellbore includes the steps of: monitoring temperature in real time in the wellbore; and observing in real time a variation in temperature gradient between fluid compositions in the wellbore. Another method of tracking fluid displacement along a wellbore includes the steps of: monitoring temperature along the wellbore; and observing a variation in temperature gradient due to a chemical reaction in the wellbore. Another method includes the step of causing a variation in temperature gradient in the fluid while the fluid flows in the wellbore.
摘要:
Tracking fluid displacement along a wellbore using real time temperature measurements. A method of tracking fluid displacement along a wellbore includes the steps of: monitoring temperature in real time in the wellbore; and observing in real time a variation in temperature gradient between fluid compositions in the wellbore. Another method of tracking fluid displacement along a wellbore includes the steps of: monitoring temperature along the wellbore; and observing a variation in temperature gradient due to a chemical reaction in the wellbore. Another method includes the step of causing a variation in temperature gradient in the fluid while the fluid flows in the wellbore.
摘要:
Tracking fluid displacement along a wellbore using real time temperature measurements. A method of tracking fluid displacement along a wellbore includes the steps of: monitoring temperature in real time in the wellbore; and observing in real time a variation in temperature gradient between fluid compositions in the wellbore. Another method of tracking fluid displacement along a wellbore includes the steps of: monitoring temperature along the wellbore; and observing a variation in temperature gradient due to a chemical reaction in the wellbore. Another method includes the step of causing a variation in temperature gradient in the fluid while the fluid flows in the wellbore.
摘要:
Methods of forming a high porosity propped fracture comprising: providing a slurry comprising a fracturing fluid, proppant particulates, and a weighting agent; introducing the slurry into a portion of a fracture within the subterranean formation; and, depositing the proppant particulates into the portion of the fracture within the subterranean formation so as to form a high porosity propped fracture. Methods of fracturing a subterranean formation to form a high porosity propped fracture comprising: creating at least one fracture within a portion of a subterranean formation; placing a slurry comprising a fracturing fluid, high density plastic particulates, and a weighting agent into at least a portion of the created fracture; and, depositing the high density plastic proppant particulates into a portion of the fracture so as to form a high porosity propped fracture. Slurries suitable for use in subterranean fracturing operations comprising: a fracturing fluid, proppant particulates, and a weighting agent.
摘要:
Methods of forming a high porosity propped fracture comprising: providing a slurry comprising a fracturing fluid, proppant particulates, and a weighting agent; introducing the slurry into a portion of a fracture within the subterranean formation; and, depositing the proppant particulates into the portion of the fracture within the subterranean formation so as to form a high porosity propped fracture. Methods of fracturing a subterranean formation to form a high porosity propped fracture comprising: creating at least one fracture within a portion of a subterranean formation; placing a slurry comprising a fracturing fluid, high density plastic particulates, and a weighting agent into at least a portion of the created fracture; and, depositing the high density plastic proppant particulates into a portion of the fracture so as to form a high porosity propped fracture. Slurries suitable for use in subterranean fracturing operations comprising: a fracturing fluid, proppant particulates, and a weighting agent.
摘要:
The present invention relates to high porosity propped fractures and methods of creating high porosity propped fractures in portions of subterranean formations. Another embodiment of the present invention provides a method of forming a high porosity propped fracture in a subterranean formation, comprising providing a slurry comprising a fracturing fluid and proppant particulates coated with an adhesive substance; introducing the slurry into a portion of a fracture within the subterranean formation; and, depositing the proppant particulates into the portion of the fracture within the subterranean formation so as to form a high porosity propped fracture. Another embodiment of the present invention provides a high porosity propped fracture comprising proppant particulates substantially coated with an adhesive substance wherein the propped fracture has a porosity of at least about 50%.
摘要:
Improved methods of placing and/or diverting treatment fluids in subterranean formations are provided. In one embodiment, the methods comprise: introducing a diverting material into a subterranean formation penetrated by a well bore to reduce or prevent the flow of fluid into a first portion of the subterranean formation; introducing a first fluid into a second portion of the subterranean formation having a higher fluid flow resistance than the first portion of the subterranean formation; allowing the diverting material to be removed from the subterranean formation after at least a portion of the first fluid has been introduced into the second portion of the subterranean formation; and introducing a second fluid into the first portion of the subterranean formation.
摘要:
Methods for designing and performing a treatment operation on a subterranean formation penetrated by a wellbore are provided, in which the treatment operation includes the use of a treatment fluid comprising reactants for a chemical reaction. The methods generally include the step of obtaining wellbore temperature-profile information on the wellbore and obtaining kinetic or thermodynamic data for the chemical reaction, and combining the information to help design the treatment operation. Preferably, the methods include the use of a distributed temperature system (“DTS”) for gaining temperature-profile information for a wellbore.