Abstract:
The implantable medical device is for implantation into a patient's body and is wirelessly powered by an external control device. The implantable medical device is induced by an AC electromagnetic field of the external control device through an inductive coil. A rectifier converts the AC electromagnetic field into a DC current. A detector detects a voltage value of the DC current, and a processor produces a first piece of status information accordingly. A transceiver receives and relays the first piece of status information to the external control device so as to monitor the power consumption of the implantable medical device when it is wirelessly powered.
Abstract:
An electronic stimulation device for electrically stimulating at least one dorsal root ganglion with relative low pain sensations without generating relative much sensations of paresthesia comprises at least one electronic stimulation unit. The electronic stimulation unit includes at least one first electrode and at least one second electrode, and it delivers a high-frequency electrical stimulation signal to impel the first electrode and the second electrode to generate an electric field. The range of the electric field covers the dorsal root ganglion, and the electric field strength ranges from 100 V/m to 1000 V/m.
Abstract:
The implantable medical device is for implantation into a patient's body and is wirelessly powered by an external control device. The implantable medical device is induced by an AC electromagnetic field of the external control device through an inductive coil. A rectifier converts the AC electromagnetic field into a DC current. A detector detects a voltage value of the DC current, and a processor produces a first piece of status information accordingly. A transceiver receives and relays the first piece of status information to the external control device so as to monitor the power consumption of the implantable medical device when it is wirelessly powered.
Abstract:
An electronic stimulation device is adapted for electrically stimulating a target zone of an organism with relative low pain sensations without generating relative much sensations of paresthesia. The electronic stimulation device comprises at least one electronic stimulation unit. The electronic stimulation unit includes at least one first electrode and at least one second electrode. The electronic stimulation unit receives a high-frequency electrical stimulation signal to impel the first electrode and the second electrode to generate an electric field. The range of the electric field covers the target zone, and the electric field strength ranges from 100 V/m to 1000 V/m. The frequency of the high-frequency electrical stimulation signal ranges from 200 KHz to 1000 KHz.
Abstract:
An electronic stimulation device for electrically stimulating at least one dorsal root ganglion with relative low pain sensations without generating relative much sensations of paresthesia comprises at least one electronic stimulation unit. The electronic stimulation unit includes at least one first electrode and at least one second electrode, and it delivers a high-frequency electrical stimulation signal to impel the first electrode and the second electrode to generate an electric field. The frequency of the high-frequency electrical stimulation signal ranges from 200 kHz to 1000 kHz.
Abstract:
An external control device includes a human-computer interface, a first controller and a power transmitting unit. An implantable medical device includes a power receiving unit, a second controller and a second detector. A method for monitoring power supply comprises: producing a first magnetic field by the power transmitting unit; sensing the first magnetic field to produce a second magnetic field and converting it into a direct current by the power receiving unit; detecting a power value of the direct current by the second detector to output a detection signal to the second controller; outputting a status information to the external control device by the second controller according to the detection signal; and receiving the status information by the first controller. The first controller transmits an adjustment signal to the power transmitting unit if informed of the status information that the power value is not within a designate power range.
Abstract:
The electromagnetic stimulation device contains at least a positive electrode and at least a negative electrode. An insulating gap having width of a first distance is maintained between the positive and negative electrodes. The positive and negative electrodes are at least at a second distance away from a nerve to be stimulated. A preset voltage is applied to the positive and negative electrodes so that a low-power, low-temperature, high-frequency electromagnetic field covering and stimulating the nerve is produced between the positive and negative electrodes. By the stimulation of the low-power, low-temperature, high-frequency electromagnetic field, the nerve's threshold is increased, the nerve's transmission capability is reduced, and therefore the nerve pain is effectively eased.
Abstract:
The electromagnetic stimulation device contains at least a positive electrode and at least a negative electrode. An insulating gap having width of a first distance is maintained between the positive and negative electrodes. The positive and negative electrodes are at least at a second distance away from a nerve to be stimulated. A preset voltage is applied to the positive and negative electrodes so that a low-power, low-temperature, high-frequency electromagnetic field covering and stimulating the nerve is produced between the positive and negative electrodes. By the stimulation of the low-power, low-temperature, high-frequency electromagnetic field, the nerve's threshold is increased, the nerve's transmission capability is reduced, and therefore the nerve pain is effectively eased.