摘要:
An improved system for generating an abrasive fluid jet is shown and described. In a preferred embodiment, abrasive is fed from a bulk hopper into an air isolator having a baffle that limits the flow of air and abrasive through the air isolator, thereby venting air from the abrasive. An on/off device having a rod coupled to a stopper is provided within the air isolator, the rod being selectively raised and lowered in a vertical direction. A discharge orifice is provided in a bottom surface of the air isolator, the stopper covering the discharge orifice when the rod is in a lowered position, thereby preventing the discharge of abrasive from the air isolator.A metering disk is provided adjacent the discharge orifice, an orifice in the metering disk being aligned with the discharge orifice, such that abrasive exiting the air isolator flows through the metering disk. A vented adapter is coupled to the air isolator, which helps to control the flow of abrasive through the system and serves to eject any abrasive or fluid that may back up into the system due to a clog, thereby preventing fluid from backing up into the air isolator. Abrasive is then fed from the vented adapter through a feedline into a mixing chamber of a cutting head, the abrasive being entrained by a high-pressure fluid jet, such that the abrasive and high-pressure fluid jet mix and are ejected through a mixing tube coupled to the cutting head as an abrasive fluid jet.The high-pressure fluid jet is generated by forcing a volume of high-pressure fluid through an orifice that is set in a tapered mount, the tapered mount being seated in the cutting head and having shallowly tapered walls, such that the mount does not swage itself into the cutting head. The mixing tube is provided with a reference member on an outer surface of the mixing tube, thereby positioning the mixing tube in a simple and efficient manner.The cutting head is further provided with a second inlet port that may be coupled to any selected attachment, for example, an assembly for monitoring the performance of the system or a piercing attachment.
摘要:
An improved apparatus and methods for recovering abrasive from an abrasive-laden fluid are shown and described. An abrasive-laden fluid handling device is coupled to a catcher tank to collect abrasive-laden fluid and transport it to a hydro-classifier. Wet recovered abrasive is discharged from the hydro-classifier and transferred to a de-watering device. The de-watering device removes water from the abrasive by decanting fluid and via use of an air eduction system. De-watered abrasive is then ejected from the de-watering device to a dryer unit, to be further dried and processed for reuse.
摘要:
This invention relates to methods and apparatus for recovering abrasive for use with abrasive jet cutting systems. In one embodiment, an apparatus in accordance with the invention includes an abrasive-laden fluid handling device coupled to a catcher tank of an abrasive jet cutting system, a pre-classifier fluidly coupled to the abrasive-laden fluid handling device, a hydro-classifier fluidly coupled to the pre-classifier, a fine-particle separation tank fluidly coupled to a clarified-fluid flow outlet of the hydro-classifier, a wet abrasive receptacle positioned to receive a wet recovered abrasive discharged from the hydro-classifier, a de-watering device engageable with the wet recovered abrasive in wet abrasive receptacle, and a dryer unit. The abrasive-laden fluid handling device may include an abrasive-laden fluid conduit having a first end in fluid communication with the catcher tank and an abrasive-laden fluid outlet. Alternately, the abrasive-laden fluid handling device may include a fluid drive system. In another embodiment, a de-watering device includes a housing having a wet abrasive intake and a de-watered abrasive, and an eductor port situated along an abrasive travel path extending between the wet abrasive intake and the de-watered abrasive outlet, an eductor inlet coupled to the eductor port and coupleable to a source of eduction air, and a transport device. In a further embodiment, an apparatus includes an airflow control valve fluidly coupled to the eductor port and positionable in a first position to draw an entrained airflow from within the housing through the eductor port, and a second position to backflow the eduction air through the eductor port into the housing.