Abstract:
A head mounted display (HMD) adjusts feature tracking parameters based on a power mode of the HMD. Examples of feature tracking parameters that can be adjusted include the number of features identified from captured images, the scale of features identified from captured images, the number of images employed for feature tracking, and the like. By adjusting its feature tracking parameters based on its power mode, the HMD can initiate the feature tracking process in low-power modes and thereby shorted the time for high-fidelity feature tracking when a user initiates a VR or AR experience at the HMD.
Abstract:
A user portable device includes a device chassis comprising at least one opening at a surface of the device chassis and a sensor assembly aligned with the at least one opening. The sensor assembly includes a mounting structure and a plurality of sensors mounted to the mounting structure. The sensors include at least two sensors utilized by the user portable device based on a specified geometric configuration between the at least two sensors. The user portable device further includes a mounting fastener that mounts the sensor assembly to the device chassis so as to isolate the sensor assembly from deformation of the surface of the device chassis along one or more axes during user handling, and thus aid in preventing alteration of a baseline geometric configuration of one or more sensors of the sensor assembly due to the chassis deformation.
Abstract:
A user portable device includes a device chassis comprising at least one opening at a surface of the device chassis and a sensor assembly aligned with the at least one opening. The sensor assembly includes a mounting structure and a plurality of sensors mounted to the mounting structure. The sensors include at least two sensors utilized by the user portable device based on a specified geometric configuration between the at least two sensors. The user portable device further includes a mounting fastener that mounts the sensor assembly to the device chassis so as to isolate the sensor assembly from deformation of the surface of the device chassis along one or more axes during user handling, and thus aid in preventing alteration of a baseline geometric configuration of one or more sensors of the sensor assembly due to the chassis deformation.