Abstract:
An eye-mountable device includes an enclosure material, a capacitive sensor system, and a controller. The enclosure material has a concave surface and a convex surface. The concave surface is configured to be removeably mounted over a cornea and the convex surface is configured to be compatible with eyelid motion when the concave surface is so mounted. The capacitive sensor system is disposed within the enclosure material. The capacitive sensor system has at least one capacitance value that varies with changes in a gazing direction of the cornea. The controller is disposed within the enclosure material and electrically connected to the capacitive sensor system. The controller is configured to measure the capacitance value of the capacitive sensor system to detect the changes in the gazing direction.
Abstract:
Techniques and mechanisms for providing access to an accommodation-capable eye-mountable device via a user interface of an auxiliary device. In an embodiment, the user interface provides prompts for a user of the eye-mountable device to perform various viewing actions, where the eye-mountable device receives from the auxiliary device communications indicating respective times of the viewing actions. Based on the communications, the eye-mountable device generates configuration information indicating a correspondence of respective states of the eye-mountable device to respective characteristics of the viewing actions. In another embodiment, operational modes of the eye-mountable device are defined based on the configuration information.
Abstract:
A method of capacitive gaze detection for accommodation includes monitoring at least one capacitance value of a capacitive sensor system disposed within a contact lens. The at least one capacitance value varies in response to changes in a gazing direction of a cornea upon which the contact lens is removeably mounted. The changes in the gazing direction of the cornea are detected in real-time based upon changes in the at least one capacitance value. An accommodation actuator disposed within the contact lens is manipulated to automatically change an optical power of the contact lens in response to detecting changes in the gazing direction.