Abstract:
A method of capacitive gaze detection for accommodation includes monitoring at least one capacitance value of a capacitive sensor system disposed within a contact lens. The at least one capacitance value varies in response to changes in a gazing direction of a cornea upon which the contact lens is removeably mounted. The changes in the gazing direction of the cornea are detected in real-time based upon changes in the at least one capacitance value. An accommodation actuator disposed within the contact lens is manipulated to automatically change an optical power of the contact lens in response to detecting changes in the gazing direction.
Abstract:
An eye-mountable device includes an enclosure material, a capacitive sensor system, and a controller. The enclosure material has a concave surface and a convex surface. The concave surface is configured to be removeably mounted over a cornea and the convex surface is configured to be compatible with eyelid motion when the concave surface is so mounted. The capacitive sensor system is disposed within the enclosure material. The capacitive sensor system has at least one capacitance value that varies with changes in a gazing direction of the cornea. The controller is disposed within the enclosure material and electrically connected to the capacitive sensor system. The controller is configured to measure the capacitance value of the capacitive sensor system to detect the changes in the gazing direction.
Abstract:
Techniques and mechanisms to power automatic accommodation by an eye-mountable device. In an embodiment, the eye-mountable device includes an accommodation actuator to change an optical strength of the eye-mountable device. Control logic of the eye-mountable device is to transition a supply voltage between different levels to drive operation of the accommodation actuator, including the control logic to perform a step-wise transition of the supply voltage from a first voltage level to a second voltage level. In another embodiment, the control logic includes a bidirectional direct current to direct current (DC-DC) converter. During the step-wise transition of the supply voltage, the bidirectional DC-DC converter is configured to aid in recharging a battery of the eye-mountable device with charge from the accommodation actuator.