Abstract:
A server device determines a plurality of images for a query. One or more images, of the plurality of images, are associated with one or more senses of the query. The server device maps the plurality of images into a space by representing the plurality of images with corresponding points in the space; determines one or more hyperplanes in the space based on the corresponding points in the space; calculates one or more scores for the plurality of images based on the corresponding points and the one or more hyperplanes; and ranks the one or more images based on the one or more scores.
Abstract:
A computer-implemented technique can include receiving, at a server, labeled training data including a plurality of groups of words, each group of words having a predicate word, each word having generic word embeddings. The technique can include extracting, at the server, the plurality of groups of words in a syntactic context of their predicate words. The technique can include concatenating, at the server, the generic word embeddings to create a high dimensional vector space representing features for each word. The technique can include obtaining, at the server, a model having a learned mapping from the high dimensional vector space to a low dimensional vector space and learned embeddings for each possible semantic frame in the low dimensional vector space. The technique can also include outputting, by the server, the model for storage, the model being configured to identify a specific semantic frame for an input.
Abstract:
A computer-implemented technique can include receiving, at a server, labeled training data including a plurality of groups of words, each group of words having a predicate word, each word having generic word embeddings. The technique can include extracting, at the server, the plurality of groups of words in a syntactic context of their predicate words. The technique can include concatenating, at the server, the generic word embeddings to create a high dimensional vector space representing features for each word. The technique can include obtaining, at the server, a model having a learned mapping from the high dimensional vector space to a low dimensional vector space and learned embeddings for each possible semantic frame in the low dimensional vector space. The technique can also include outputting, by the server, the model for storage, the model being configured to identify a specific semantic frame for an input.