Abstract:
Systems and methods for estimating attitude using double differenced GPS carrier phase measurements are provided. An exemplary computer-implemented method includes obtaining, by one or more computing devices, an initial candidate attitude. The method includes determining, by the one or more computing devices, a plurality of expected double differenced carrier phase values based on the initial candidate attitude. The method includes inputting, by the one or more computing devices, the plurality of expected double differenced carrier phase values into a cost function. The cost function respectively compares the plurality of expected double differenced carrier phase values to a plurality of measured double differenced carrier phase values. The method includes minimizing, by the one or more computing devices, the cost function. The method includes selecting, by the one or more computing devices, a final candidate attitude associated with the minimized cost function as the attitude of the device.
Abstract:
Systems and methods for estimating attitude using double differenced GPS carrier phase measurements are provided. An exemplary computer-implemented method includes obtaining, by one or more computing devices, an initial candidate attitude. The method includes determining, by the one or more computing devices, a plurality of expected double differenced carrier phase values based on the initial candidate attitude. The method includes inputting, by the one or more computing devices, the plurality of expected double differenced carrier phase values into a cost function. The cost function respectively compares the plurality of expected double differenced carrier phase values to a plurality of measured double differenced carrier phase values. The method includes minimizing, by the one or more computing devices, the cost function. The method includes selecting, by the one or more computing devices, a final candidate attitude associated with the minimized cost function as the attitude of the device.