Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.
Abstract:
The technology described herein can be embodied in a method that includes receiving an audio signal encoding a portion of an utterance, and providing, to a first neural network, data corresponding to the audio signal. The method also includes generating, by a processor, data representing a transcription for the utterance based on an output of the first neural network. The first neural network is trained using features of multiple context-dependent states, the context-dependent states being derived from a plurality of context-independent states provided by a second neural network.
Abstract:
Systems and methods are described for improving endpoint detection of a voice query submitted by a user. In some implementations, a synchronized video data and audio data is received. A sequence of frames of the video data that includes images corresponding to lip movement on a face is determined. The audio data is endpointed based on first audio data that corresponds to a first frame of the sequence of frames and second audio data that corresponds to a last frame of the sequence of frames. A transcription of the endpointed audio data is generated by an automated speech recognizer. The generated transcription is then provided for output.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for neural network adaptive beamforming for multichannel speech recognition are disclosed. In one aspect, a method includes the actions of receiving a first channel of audio data corresponding to an utterance and a second channel of audio data corresponding to the utterance. The actions further include generating a first set of filter parameters for a first filter based on the first channel of audio data and the second channel of audio data and a second set of filter parameters for a second filter based on the first channel of audio data and the second channel of audio data. The actions further include generating a single combined channel of audio data. The actions further include inputting the audio data to a neural network. The actions further include providing a transcription for the utterance.
Abstract:
Methods, including computer programs encoded on a computer storage medium, for enhancing the processing of audio waveforms for speech recognition using various neural network processing techniques. In one aspect, a method includes: receiving multiple channels of audio data corresponding to an utterance; convolving each of multiple filters, in a time domain, with each of the multiple channels of audio waveform data to generate convolution outputs, wherein the multiple filters have parameters that have been learned during a training process that jointly trains the multiple filters and trains a deep neural network as an acoustic model; combining, for each of the multiple filters, the convolution outputs for the filter for the multiple channels of audio waveform data; inputting the combined convolution outputs to the deep neural network trained jointly with the multiple filters; and providing a transcription for the utterance that is determined.