摘要:
A computer-implemented technique can receive a plurality of photos and automatically select a subset of the plurality of photos having a high degree of representativeness by jointly maximizing both photo quality and photo diversity to obtain a photo album. The technique can determine one or more clusters for the photo album using a hierarchical clustering algorithm, and store the photo album according to the one or more clusters. The technique can control the manner in which the photo album is displayed using the one or more clusters. The technique can adjust at least one of the one or more clusters and the automatic photo album generation based on user input. The user input can include at least one of adding, deleting, and moving a photo with respect to the one or more clusters. The technique can then re-cluster, automatically generate a new photo album, and/or adjust the presentation.
摘要:
The disclosed technology includes techniques for improved content coverage in automatically-generated content summaries. The technique may include clustering a set of input content, determining diffusion for each cluster, and selecting representatives of each cluster to optimize other secondary metrics. Various types of input content may be used, including groups of images, video clips, or other multimedia content. Contiguous content may be manually or programmatically divided into discrete portions before clustering, for example, a lengthy video divided into a number of short clips. In some implementations, the disclosed technique may be implemented effectively on a mobile device. In other words, the processing required may be computationally feasible for execution on a smartphone or similar device.
摘要:
A computer-implemented technique can receive a plurality of photos and automatically select a subset of the plurality of photos having a high degree of representativeness by jointly maximizing both photo quality and photo diversity to obtain a photo album. The technique can determine one or more clusters for the photo album using a hierarchical clustering algorithm, and store the photo album according to the one or more clusters. The technique can control the manner in which the photo album is displayed using the one or more clusters. The technique can adjust at least one of the one or more clusters and the automatic photo album generation based on user input. The user input can include at least one of adding, deleting, and moving a photo with respect to the one or more clusters. The technique can then re-cluster, automatically generate a new photo album, and/or adjust the presentation.
摘要:
In one example, a method includes determining, by a processor (104) of a wearable computing device (102) and based on motion data generated by a motion sensor (106) of the wearable computing device, one or more strokes. In this example, the method also includes generating, by the processor and based on the motion data, a respective attribute vector for each respective stroke from the one or more strokes and classifying, by the processor and based on the respective attribute vector, each respective stroke from the one or more strokes into at least one category. In this example, the method also includes determining, by the processor and based on a gesture library and the at least one category for each stroke from the one or more strokes, a gesture. In this example, the method also includes performing, by the wearable device and based on the gesture, an action.
摘要:
A computer-implemented technique can receive a plurality of photos and automatically select a subset of the plurality of photos having a high degree of representativeness by jointly maximizing both photo quality and photo diversity to obtain a photo album. The technique can determine one or more clusters for the photo album using a hierarchical clustering algorithm, and store the photo album according to the one or more clusters. The technique can control the manner in which the photo album is displayed using the one or more clusters. The technique can adjust at least one of the one or more clusters and the automatic photo album generation based on user input. The user input can include at least one of adding, deleting, and moving a photo with respect to the one or more clusters. The technique can then re-cluster, automatically generate a new photo album, and/or adjust the presentation.
摘要:
The disclosed technology includes techniques for improved content coverage in automatically-generated content summaries. The technique may include clustering a set of input content, determining diffusion for each cluster, and selecting representatives of each cluster to optimize other secondary metrics. Various types of input content may be used, including groups of images, video clips, or other multimedia content. Contiguous content may be manually or programmatically divided into discrete portions before clustering, for example, a lengthy video divided into a number of short clips. In some implementations, the disclosed technique may be implemented effectively on a mobile device. In other words, the processing required may be computationally feasible for execution on a smartphone or similar device.
摘要:
Techniques for determining motion saliency in video content using center-surround receptive fields. In some implementations, images or frames from a video may be apportioned into non-overlapped regions, for example, by applying a rectilinear grid. For each grid region, or cell, motion consistency may be measured between the center and surround area of that cell across frames of the video. Consistent motion across the center-surround area may indicate that the corresponding region has low variation. The larger the difference between center-surround motions in a cell, the more likely the region has high motion saliency.
摘要:
In one example, a method includes determining, by a processor (104) of a wearable computing device (102) and based on motion data generated by a motion sensor (106) of the wearable computing device, one or more strokes. In this example, the method also includes generating, by the processor and based on the motion data, a respective attribute vector for each respective stroke from the one or more strokes and classifying, by the processor and based on the respective attribute vector, each respective stroke from the one or more strokes into at least one category. In this example, the method also includes determining, by the processor and based on a gesture library and the at least one category for each stroke from the one or more strokes, a gesture. In this example, the method also includes performing, by the wearable device and based on the gesture, an action.
摘要:
Techniques for determining motion saliency in video content using center-surround receptive fields. In some implementations, images or frames from a video may be apportioned into non-overlapped regions, for example, by applying a rectilinear grid. For each grid region, or cell, motion consistency may be measured between the center and surround area of that cell across frames of the video. Consistent motion across the center-surround area may indicate that the corresponding region has low variation. The larger the difference between center-surround motions in a cell, the more likely the region has high motion saliency.