Abstract:
Disclosed here are methods and systems that relate to determining a moving direction of a mobile device user. The methods and systems relate to using an inertial navigation system such as an accelerometer and gyroscope to aid in the determination of the moving direction of the user. The methods and systems may receive an acceleration reading associated with the mobile device, and determine a step frequency of the user based on the acceleration reading. The methods and systems may determine a theoretical model to fit the acceleration reading, and may determine the moving direction of the user based on the theoretical model.
Abstract:
Disclosed here are methods and systems that relate to determining a moving direction of a mobile device user. The methods and systems relate to using an inertial navigation system such as an accelerometer and gyroscope to aid in the determination of the moving direction of the user. The methods and systems may receive an acceleration reading associated with the mobile device, and determine a step frequency of the user based on the acceleration reading. The methods and systems may determine a theoretical model to fit the acceleration reading, and may determine the moving direction of the user based on the theoretical model.
Abstract:
A MEMS type sensor is used for measuring a particular parameter on an IC chip within an electronic device, such as music player, a smart cellular telephone, etc. The parameter may be a scalar parameter, such as a directional orientation indicative a current compass point, or a multidimensional vector parameter, such as a three-dimensional acceleration. The sensor output is recalibrated using stored coefficients when ambient conditions vary. The stored coefficients may be modified during calibration.
Abstract:
A system and method for attitude correction is provided. An acceleration and an attitude of an electronic device are detected. A period of time where a velocity of the electronic device at the beginning of the period of time and a velocity of the electronic device at the end of the period of time are equal is identified. An attitude correction is calculated based on the identified period of time and the detected acceleration of the electronic device during the period of time. The detected attitude of the electronic device is corrected with the calculated attitude correction.
Abstract:
Disclosed here are methods and systems that relate to determining a moving direction of a mobile device user. The methods and systems relate to using an inertial navigation system such as an accelerometer and gyroscope to aid in the determination of the moving direction of the user. The methods and systems may receive an acceleration reading associated with the mobile device, and determine a step frequency of the user based on the acceleration reading. The methods and systems may determine a theoretical model to fit the acceleration reading, and may determine the moving direction of the user based on the theoretical model.