Abstract:
Aspects of the subject technology relate to scaling an application window. A method includes determining a first window size for an application, and instructing the application to render at the first window size. The method also includes determining a second window size for the application, scaling the first window size to the second window size based on a scale value, and displaying the scaled application at the second window size. The scaling allows a full-screen view of the application to be displayed on a smaller window, or allows shrinking the application window to a size below a normal minimum window size. Inputs to the scaled window are also scaled so that the application continues to behave as if rendered at the first window size.
Abstract:
Systems, methods, and machine-readable media transitioning between two power states based on user-related signals are provided. A computing device in a first power state may monitor multiple sensors and receive first sensor signals from a first group of the sensors. One or more radio frequency (RF) signals may be received from one or more nearby communication devices. The first sensor signals may be used to determine that the computing device has been picked up and, in response, an application processor maybe activated. The application processor may select a second power state based on the first power state and the first sensor signals. The second power state includes a power on state when the first power state is a suspended power state and the first sensor signals indicate that the computing device has been picked up while being touched on a screen. The computing device is transitioned to the second power state.
Abstract:
Systems, methods, and machine-readable media transitioning between two power states based on user-related signals are provided. A computing device in a first power state may monitor multiple sensors and receive first sensor signals from a first group of the sensors. One or more radio frequency (RF) signals may be received from one or more nearby communication devices. The first sensor signals may be used to determine that the computing device has been picked up and, in response, an application processor maybe activated. The application processor may select a second power state based on the first power state and the first sensor signals. The second power state includes a power on state when the first power state is a suspended power state and the first sensor signals indicate that the computing device has been picked up while being touched on a screen. The computing device is transitioned to the second power state.