Abstract:
A computer system issues a batch read operation to a tablet in a first replication group in a distributed database and obtains a most recent version of data items in the tablet that have a timestamp no great than a snapshot timestamp T. For each data item in the one tablet, the computer system determines whether the data item has a move-in timestamp less than or equal to the snapshot timestamp T, which is less than a move-out timestamp, and whether the data item has a creation timestamp less than the snapshot timestamp T, which is less than or equal to a deletion timestamp. If the determination is true, the computer system determines whether the move-out timestamp has an actual associated value and, if so, the computer system determines a second tablet in a second replication group in the database that includes the data item and issues the snapshot read operation to the second table in the second replication group to obtain a most-recent version of the data item that has a timestamp no greater than the snapshot timestamp T; otherwise, the computer system issues the snapshot read to the one tablet to obtain a most recent version of the data item that has a timestamp no greater than the snapshot timestamp T.
Abstract:
A system, computer-readable storage medium storing at least one program, and a computer-implemented method for identifying a storage group in a distributed storage system into which data is to be stored is presented. A data structure including information relating to storage groups in a distributed storage system is maintained, where a respective entry in the data structure for a respective storage group includes placement metrics for the respective storage group. A request to identify a storage group into which data is to be stored is received from a computer system. The data structure is used to determine an identifier for a storage group whose placement metrics satisfy a selection criterion. The identifier for the storage group whose placement metrics satisfy the selection criterion is returned to the computer system.
Abstract:
A computer system issues a batch read operation to a tablet in a first replication group in a distributed database and obtains a most recent version of data items in the tablet that have a timestamp no great than a snapshot timestamp T. For each data item in the one tablet, the computer system determines whether the data item has a move-in timestamp less than or equal to the snapshot timestamp T, which is less than a move-out timestamp, and whether the data item has a creation timestamp less than the snapshot timestamp T, which is less than or equal to a deletion timestamp. If the determination is true, the computer system determines whether the move-out timestamp has an actual associated value and, if so, the computer system determines a second tablet in a second replication group in the database that includes the data item and issues the snapshot read operation to the second table in the second replication group to obtain a most-recent version of the data item that has a timestamp no greater than the snapshot timestamp T; otherwise, the computer system issues the snapshot read to the one tablet to obtain a most recent version of the data item that has a timestamp no greater than the snapshot timestamp T.
Abstract:
Methods and systems for a distributed transaction in a distributed database system are described. One example includes identifying a request to insert a split point in a source group comprising one or more tablet replicas, each tablet including at least a portion of data from a table in the distributed database system, and the split point splitting data in the source group into a first range and a second range different than the first range; in response to the request: sending a list of filenames in the first range of the source group to a first target group comprising one or more tablet replicas; and creating, at the first target group, a virtual copy of files represented by the list of filenames in the first range, the virtual copy making data of the files available, each using a new name, without duplicating the data of the files.
Abstract:
A system, computer-readable storage medium storing at least one program, and a computer-implemented method for committing transactions on remote servers is presented. Commit requests are issued to remote servers in a set of remote servers to request that the remote servers in the set of remote servers agree to commit a transaction at a first designated future time. When responses from the remote servers in the set of remote servers are received before a first abort time and indicate that all remote servers in the set of remote servers have agreed to commit the transaction at the first designated future time, commit commands are issued to the remote servers in the set of remote servers instructing the remote servers to perform the transaction at the first designated future time.
Abstract:
In a distributed system where a client's call to commit a transaction occurs outside the transaction's lock-hold interval, computation of timestamp information for the transaction is moved to a client library, while ensuring that no conflicting reads or writes are performed between a time of the computation and acquiring all locks for the transaction. The transaction is committed in phases, with each phase being initiated by the client library. Timestamp information is added to the locks to ensure that timestamps are generated during lock-hold intervals. An increased number of network messages is thereby overlapped with a commit wait period in which a write in a distributed database is delayed in time to ensure concurrency in the database.
Abstract:
A system, computer-readable storage medium storing at least one program, and a computer-implemented method for committing transactions on remote servers is presented. Commit requests are issued to remote servers in a set of remote servers to request that the remote servers in the set of remote servers agree to commit a transaction at a first designated future time. When responses from the remote servers in the set of remote servers are received before a first abort time and indicate that all remote servers in the set of remote servers have agreed to commit the transaction at the first designated future time, commit commands are issued to the remote servers in the set of remote servers instructing the remote servers to perform the transaction at the first designated future time.
Abstract:
In a distributed system where a client's call to commit a transaction occurs outside the transaction's lock-hold interval, computation of timestamp information for the transaction is moved to a client library, while ensuring that no conflicting reads or writes are performed between a time of the computation and acquiring all locks for the transaction. The transaction is committed in phases, with each phase being initiated by the client library. Timestamp information is added to the locks to ensure that timestamps are generated during lock-hold intervals. An increased number of network messages is thereby overlapped with a commit wait period in which a write in a distributed database is delayed in time to ensure concurrency in the database.
Abstract:
A system, computer-readable storage medium storing at least one program, and a computer-implemented method for identifying a storage group in a distributed storage system into which data is to be stored is presented. A data structure including information relating to storage groups in a distributed storage system is maintained, where a respective entry in the data structure for a respective storage group includes placement metrics for the respective storage group. A request to identify a storage group into which data is to be stored is received from a computer system. The data structure is used to determine an identifier for a storage group whose placement metrics satisfy a selection criterion. The identifier for the storage group whose placement metrics satisfy the selection criterion is returned to the computer system.