Abstract:
This disclosure provides systems, methods, and apparatus for mitigating the effects of an optical link in a communication system on polarization angles of signals transmitted over the optical link. The communication system can include an optical transmitter transmitting polarization-division multiplexed (PDM) optical signals over the optical link and a direct-detection receiver for receiving the PDM optical signals. The transmitter can include a polarization compensation unit for receiving estimated values of link polarization parameters from the receiver. The receiver uses the estimated values to pre-distort modulator drive and bias signals and to adjust the relative phase between modulated optical signals. The transmitter can also transmit training optical signals to the receiver over the optical link. The receiver uses the training optical signals to estimate the values of link polarization parameters. The receiver also can include a crosstalk mitigation unit for mitigating effects of crosstalk between the PDM optical signals.
Abstract:
This disclosure provides systems, methods, and apparatus for mitigating the effects of interference signals on optical signals received at a direct-detection optical receivers. The optical receivers are capable of attenuating interference noise signals resulting from the interference between a transmitted optical signal transmitted from a transmitter to the optical receiver and one or more additional signals received at the optical receiver. The interference can be due to multi-path interference or due to in-band interference. The receivers include a tunable filter for filtering the received optical signal to remove the interference. A frequency offset module processes the received optical signal to determine a frequency offset indicative of the difference between the carrier frequencies of a modulated optical signal and an interference optical signal. The offset frequency and a bandwidth determined by the frequency offset module can be used to adjust the tunable filter to remove the interference signal from the received signal.
Abstract:
This disclosure provides systems, methods, and apparatus for an energy efficient communication system. The communication system can include a transmitter, a receiver and a communication link for communicating data between the transmitter and the receiver. In some implementations, the receiver determines a signal quality parameter (SQP) value of the received data, and communicates the SQP value to the transmitter. In some implementations, the transmitter adjusts one or more operational parameters of the transmitter to reduce power based on the received SQP value being less than a threshold value. In some implementations, the receiver also adjusts one or more operational parameters of the receiver based on the SQP value being less than a threshold value. In some implementations, the receiver can communicate the SQP value to the transmitter over out-of-band communication links.
Abstract:
This disclosure provides systems, methods, and apparatus for improving a signal-to-noise ratio of a signal transmitted over a communication link. The communication system can include a transmitter, a receiver and a communication link for communicating data between the transmitter and the receiver. In some implementations, the transmitter employs a modulator for generating a modulated data signal and a complementary modulated data signal and send over the fiber link through two orthogonal polarizations. The receiver utilizes both the modulated data signal and the complementary modulated data signal for regenerating the transmitted data at the receiver. In some implementations, the receiver determines and transmits a polarization parameter to the transmitter, which adjusts the polarizations of the transmitted modulated and complementary modulated data signals to compensate for polarization angle rotation introduced by the communication link.
Abstract:
This disclosure provides systems, methods, and apparatus for mitigating the effects of interference signals on optical signals received at a direct-detection optical receivers. The optical receivers are capable of attenuating interference noise signals resulting from the interference between a transmitted optical signal transmitted from a transmitter to the optical receiver and one or more additional signals received at the optical receiver. The interference can be due to multi-path interference or due to in-band interference. The receivers include a tunable filter for filtering the received optical signal to remove the interference. A frequency offset module processes the received optical signal to determine a frequency offset indicative of the difference between the carrier frequencies of a modulated optical signal and an interference optical signal. The offset frequency and a bandwidth determined by the frequency offset module can be used to adjust the tunable filter to remove the interference signal from the received signal.
Abstract:
In some implementations, the output of a directly modulated laser (DML) includes nonlinearities with respect to the input signal driving the DML. When the DML is transmitting an amplitude modulated signal, the nonlinearities can induce noise into the signal, which makes it difficult for a receiving node to correctly decode the received signal. The system and methods described herein pre-correct the error caused by the nonlinearities of the DML by filtering (or pre-correcting) the data signal that drives the DML.