-
公开(公告)号:US20250045627A1
公开(公告)日:2025-02-06
申请号:US18365487
申请日:2023-08-04
Applicant: GOOGLE LLC
Inventor: Andrew Hard , Kurt Partridge , Sean Augenstein , Rajiv Mathews
IPC: G06N20/00
Abstract: Processor(s) of a client device can receive global weights of a global ML model from a remote system, obtain a client device data set, determine a Fisher information matrix for the client data set, and transmit the Fisher information matrix for the client data set to the remote system. Further, processor(s) of the remote system can determine a corresponding elastic weight consolidation (EWC) loss term for each of the global weights based on at least the Fisher information matrix, generate a server update for the global ML model based on (i) processing server data remotely at the remote system and using the global ML model and (ii) based on the corresponding EWC loss term for each of the global weights, and update the global weights of the global ML model based on the server update.
-
2.
公开(公告)号:US20230352019A1
公开(公告)日:2023-11-02
申请号:US18218818
申请日:2023-07-06
Applicant: GOOGLE LLC
Inventor: Françoise Beaufays , Rajiv Mathews , Dragan Zivkovic , Kurt Partridge , Andrew Hard
IPC: G10L15/22 , G10L15/065 , G10L15/10 , G10L15/30
CPC classification number: G10L15/22 , G10L15/065 , G10L15/10 , G10L15/30
Abstract: Processor(s) of a client device can: receive sensor data that captures environmental attributes of an environment of the client device; process the sensor data using a machine learning model to generate a predicted output that dictates whether one or more currently dormant automated assistant functions are activated; making a decision as to whether to trigger the one or more currently dormant automated assistant functions; subsequent to making the decision, determining that the decision was incorrect; and in response to determining that the determination was incorrect, generating a gradient based on comparing the predicted output to ground truth output. In some implementations, the generated gradient is used, by processor(s) of the client device, to update weights of the on-device speech recognition model. In some implementations, the generated gradient is additionally or alternatively transmitted to a remote system for use in remote updating of global weights of a global speech recognition model.
-
公开(公告)号:US12014739B2
公开(公告)日:2024-06-18
申请号:US18218818
申请日:2023-07-06
Applicant: GOOGLE LLC
Inventor: Françoise Beaufays , Rajiv Mathews , Dragan Zivkovic , Kurt Partridge , Andrew Hard
IPC: G10L15/22 , G10L15/065 , G10L15/10 , G10L15/30
CPC classification number: G10L15/22 , G10L15/065 , G10L15/10 , G10L15/30
Abstract: Processor(s) of a client device can: receive sensor data that captures environmental attributes of an environment of the client device; process the sensor data using a machine learning model to generate a predicted output that dictates whether one or more currently dormant automated assistant functions are activated; making a decision as to whether to trigger the one or more currently dormant automated assistant functions; subsequent to making the decision, determining that the decision was incorrect; and in response to determining that the determination was incorrect, generating a gradient based on comparing the predicted output to ground truth output. In some implementations, the generated gradient is used, by processor(s) of the client device, to update weights of the on-device speech recognition model. In some implementations, the generated gradient is additionally or alternatively transmitted to a remote system for use in remote updating of global weights of a global speech recognition model.
-
公开(公告)号:US11741953B2
公开(公告)日:2023-08-29
申请号:US16973572
申请日:2019-11-08
Applicant: Google LLC
Inventor: Françoise Beaufays , Rajiv Mathews , Dragan Zivkovic , Kurt Partridge , Andrew Hard
IPC: G10L15/22 , G10L15/065 , G10L15/10 , G10L15/30
CPC classification number: G10L15/22 , G10L15/065 , G10L15/10 , G10L15/30
Abstract: Processor(s) of a client device can: receive sensor data that captures environmental attributes of an environment of the client device; process the sensor data using a machine learning model to generate a predicted output that dictates whether one or more currently dormant automated assistant functions are activated; making a decision as to whether to trigger the one or more currently dormant automated assistant functions; subsequent to making the decision, determining that the decision was incorrect; and in response to determining that the determination was incorrect, generating a gradient based on comparing the predicted output to ground truth output. In some implementations, the generated gradient is used, by processor(s) of the client device, to update weights of the on-device speech recognition model. In some implementations, the generated gradient is additionally or alternatively transmitted to a remote system for use in remote updating of global weights of a global speech recognition model.
-
5.
公开(公告)号:US20230359907A1
公开(公告)日:2023-11-09
申请号:US17848947
申请日:2022-07-01
Applicant: GOOGLE LLC
Inventor: Sean Augenstein , Andrew Hard , Kurt Partridge , Rajiv Mathews , Lin Ning , Karan Singhal
IPC: G06N5/02
CPC classification number: G06N5/022
Abstract: Implementations disclosed herein are directed to various techniques for mitigating and/or preventing catastrophic forgetting in federated learning of global machine learning (ML) models. Implementations may identify a global ML model that is initially trained at a remote server based on a server data set, determine server-based data for global weight(s) of the global ML model, and transmit the global ML model and the server-based data to a plurality of client devices. The server-based data may include, for example, EWC loss term(s), client augmenting gradients, server augmenting gradients, and/or server-based data. Further, the plurality client devices may generate, based on processing corresponding predicted output and using the global ML model, and based on the server-based data, a corresponding client gradient, and transmit the corresponding client gradient to the remote server. Implementations may further generate an updated global ML model based on at least the corresponding client gradients.
-
公开(公告)号:US20230351246A1
公开(公告)日:2023-11-02
申请号:US17734766
申请日:2022-05-02
Applicant: GOOGLE LLC
Inventor: Andrew Hard , Kurt Partridge , Rajiv Mathews , Sean Augenstein
Abstract: Implementations disclosed herein are directed to utilizing elastic weight consolidation (EWC) loss term(s) in federated learning of global machine learning (ML) models. Implementations may identify a global ML model that initially trained at a remote server based on a server data set, determine the EWC loss term(s) for global weight(s) of the global ML model, and transmit the global ML model and the EWC loss term(s) to a plurality of client devices. The EWC loss term(s) may be determined based on a Fisher information matrix for the server data set. Further, the plurality client devices may generate, based on processing corresponding predicted output and using the global ML model, and based on the EWC loss term(s), a corresponding client gradient, and transmit the corresponding client gradient to the remote server. Implementations may further generate an updated global ML model based on at least the corresponding client gradients.
-
7.
公开(公告)号:US20240296843A1
公开(公告)日:2024-09-05
申请号:US18657405
申请日:2024-05-07
Applicant: GOOGLE LLC
Inventor: Françoise Beaufays , Rajiv Mathews , Dragan Zivkovic , Kurt Partridge , Andrew Hard
IPC: G10L15/22 , G10L15/065 , G10L15/10 , G10L15/30
CPC classification number: G10L15/22 , G10L15/065 , G10L15/10 , G10L15/30
Abstract: Processor(s) of a client device can: receive sensor data that captures environmental attributes of an environment of the client device; process the sensor data using a machine learning model to generate a predicted output that dictates whether one or more currently dormant automated assistant functions are activated; making a decision as to whether to trigger the one or more currently dormant automated assistant functions; subsequent to making the decision, determining that the decision was incorrect; and in response to determining that the determination was incorrect, generating a gradient based on comparing the predicted output to ground truth output. In some implementations, the generated gradient is used, by processor(s) of the client device, to update weights of the on-device speech recognition model. In some implementations, the generated gradient is additionally or alternatively transmitted to a remote system for use in remote updating of global weights of a global speech recognition model.
-
公开(公告)号:US20210327421A1
公开(公告)日:2021-10-21
申请号:US16973572
申请日:2019-11-08
Applicant: Google LLC
Inventor: Françoise Beaufays , Rajiv Mathews , Dragan Zivkovic , Kurt Partridge , Andrew Hard
IPC: G10L15/22 , G10L15/065 , G10L15/10 , G10L15/30
Abstract: Processor(s) of a client device can: receive sensor data that captures environmental attributes of an environment of the client device; process the sensor data using a machine learning model to generate a predicted output that dictates whether one or more currently dormant automated assistant functions are activated; making a decision as to whether to trigger the one or more currently dormant automated assistant functions; subsequent to making the decision, determining that the decision was incorrect; and in response to determining that the determination was incorrect, generating a gradient based on comparing the predicted output to ground truth output. In some implementations, the generated gradient is used, by processor(s) of the client device, to update weights of the on-device speech recognition model. In some implementations, the generated gradient is additionally or alternatively transmitted to a remote system for use in remote updating of global weights of a global speech recognition model.
-
-
-
-
-
-
-