-
公开(公告)号:US20180350087A1
公开(公告)日:2018-12-06
申请号:US15994509
申请日:2018-05-31
Applicant: Google LLC
Inventor: Adarsh Prakash Murthy KOWDLE , Vladimir TANKOVICH , Danhang TANG , Cem KESKIN , Jonathan James Taylor , Philip L. DAVIDSON , Shahram IZADI , Sean Ryan FANELLO , Julien Pascal Christophe VALENTIN , Christoph RHEMANN , Mingsong DOU , Sameh KHAMIS , David KIM
IPC: G06T7/593 , G06T7/32 , G06T7/33 , H04N13/271
CPC classification number: G06T7/521 , G06T7/593 , G06T2207/10021 , G06T2207/10024 , G06T2207/10152 , G06T2207/20072 , G06T2207/20076 , G06T2207/20081
Abstract: An electronic device estimates a depth map of an environment based on stereo depth images captured by depth cameras having exposure times that are offset from each other in conjunction with illuminators pulsing illumination patterns into the environment. A processor of the electronic device matches small sections of the depth images from the cameras to each other and to corresponding patches of immediately preceding depth images (e.g., a spatio-temporal image patch “cube”). The processor computes a matching cost for each spatio-temporal image patch cube by converting each spatio-temporal image patch into binary codes and defining a cost function between two stereo image patches as the difference between the binary codes. The processor minimizes the matching cost to generate a disparity map, and optimizes the disparity map by rejecting outliers using a decision tree with learned pixel offsets and refining subpixels to generate a depth map of the environment.
-
公开(公告)号:US20180350088A1
公开(公告)日:2018-12-06
申请号:US15994471
申请日:2018-05-31
Applicant: Google LLC
Inventor: Mingsong DOU , Sean Ryan FANELLO , Adarsh Prakash Murthy KOWDLE , Christoph RHEMANN , Sameh KHAMIS , Philip L. DAVIDSON , Shahram IZADI , Vladimir Tankovich
CPC classification number: G06T7/75 , G06T2207/10016 , G06T2207/10024 , G06T2207/10028
Abstract: An electronic device estimates a pose of one or more subjects in an environment based on estimating a correspondence between a data volume containing a data mesh based on a current frame captured by a depth camera and a reference volume containing a plurality of fused prior data frames based on spectral embedding and performing bidirectional non-rigid matching between the reference volume and the current data frame to refine the correspondence so as to support location-based functionality. The electronic device predicts correspondences between the data volume and the reference volume based on spectral embedding. The correspondences provide constraints that accelerate the convergence between the data volume and the reference volume. By tracking changes between the current data mesh frame and the reference volume, the electronic device avoids tracking failures that can occur when relying solely on a previous data mesh frame.
-