Abstract:
Aircraft landing gear assemblies and aircraft are provided. A landing gear assembly includes a main post and a light element cluster. The main post has a non-rotating portion and a rotatable steering portion. The light element cluster is associated with the non-rotating portion and includes at least two independently illuminating sections.
Abstract:
Nose landing gear arrangements including a folding follow-up door for reducing airflow noise for aircrafts, aircrafts including such nose landing gear arrangements, and methods for making such nose landing gear arrangements are provided herein. In one example, a nose landing gear arrangement includes a wheel assembly and a main strut. The main strut is operatively coupled to the wheel assembly and is configured to extend outside of the fuselage substantially along a generally vertical plane. A folding follow-up door is pivotally coupled to the main strut and extends to the fuselage. The folding follow-up door includes a first door section and a second door section that extend outwardly in directions away from each other to define an unfolded position. The folding follow-up door is foldable to move the first and second door sections towards each other about the generally vertical plane to define a folded position
Abstract:
The interactive aircraft cabin environment control system employs at least one microphone array disposed within the cabin to capture spoken utterances from a passenger and is configured to provide an estimation of passenger location within the cabin based on arrival time analysis of the spoken utterances. A data source onboard the aircraft provides flight context information. Such data sources include sensors measuring real-time parameters on the aircraft, the current flight plan of the aircraft, singly and in combination. A control processor, coupled to the microphone array, is configured to ascertain passenger identity based on the spoken utterances. The control processor is programmed and configured to learn and associate passenger preference to passenger identity. The control processor is receptive of the estimation of passenger location and is coupled to provide supervisory control over at least one device forming a part of the cabin environment according to passenger location, passenger preference obtained from passenger identity and flight context information.
Abstract:
Nose landing gear arrangements for aircrafts, aircrafts including such nose landing gear arrangements, and methods for making such nose landing gear arrangements are provided. In one example, a nose landing gear arrangement includes a wheel assembly and a main strut. The main strut is operatively coupled to the wheel assembly and is configured to move between an extended position and a retracted position. The main strut in the extended position extends outside of the fuselage substantially along a generally vertical plane to position the wheel assembly for takeoff and/or landing of the aircraft. The main strut in the retracted position is disposed inside the fuselage. A flexible sheet is disposed adjacent to the main strut and is configured such that when the main strut is in the extended position the flexible sheet is positioned substantially around the main strut.
Abstract:
The interactive aircraft cabin environment control system employs at least one microphone array disposed within the cabin to capture spoken utterances from a passenger and is configured to provide an estimation of passenger location within the cabin based on arrival time analysis of the spoken utterances. A data source onboard the aircraft provides flight context information. Such data sources include sensors measuring real-time parameters on the aircraft, the current flight plan of the aircraft, singly and in combination. A control processor, coupled to the microphone array, is configured to ascertain passenger identity based on the spoken utterances. The control processor is programmed and configured to learn and associate passenger preference to passenger identity. The control processor is receptive of the estimation of passenger location and is coupled to provide supervisory control over at least one device forming a part of the cabin environment according to passenger location, passenger preference obtained from passenger identity and flight context information.
Abstract:
Nose landing gear arrangements for aircrafts, aircrafts including such nose landing gear arrangements, and methods for making such nose landing gear arrangements are provided. In one example, a nose landing gear arrangement includes a wheel assembly and a main strut. The main strut is operatively coupled to the wheel assembly and is configured to move between an extended position and a retracted position. The main strut in the extended position extends outside of the fuselage substantially along a generally vertical plane to position the wheel assembly for takeoff and/or landing of the aircraft. The main strut in the retracted position is disposed inside the fuselage. A flexible sheet is disposed adjacent to the main strut and is configured such that when the main strut is in the extended position the flexible sheet is positioned substantially around the main strut.
Abstract:
Aircraft landing gear assemblies and aircraft are provided. A landing gear assembly includes a main post and a light element cluster. The main post has a non-rotating portion and a rotatable steering portion. The light element cluster is associated with the non-rotating portion and includes at least two independently illuminating sections.
Abstract:
Nose landing gear arrangements including a folding follow-up door for reducing airflow noise for aircrafts, aircrafts including such nose landing gear arrangements, and methods for making such nose landing gear arrangements are provided herein. In one example, a nose landing gear arrangement includes a wheel assembly and a main strut. The main strut is operatively coupled to the wheel assembly and is configured to extend outside of the fuselage substantially along a generally vertical plane. A folding follow-up door is pivotally coupled to the main strut and extends to the fuselage. The folding follow-up door includes a first door section and a second door section that extend outwardly in directions away from each other to define an unfolded position. The folding follow-up door is foldable to move the first and second door sections towards each other about the generally vertical plane to define a folded position.