摘要:
Systems and methods for mechanically rotating an aircraft about its center-of-gravity (CG) are disclosed. The system can enable the rear, or main, landing gear to squat, while the nose landing gear raises to generate a positive pitch angle for the aircraft for takeoff or landing. The system can also enable the nose gear and main gear to return to a relatively level fuselage attitude for ground operations. The system can include one or more hydraulically linked hydraulic cylinders to control the overall height of the nose gear and the main gear. Because the hydraulic cylinders are linked, a change on the length of the nose cylinder generates a proportional, and opposite, change in the length of the main cylinder, and vice-versa. A method and control system for monitoring and controlling the relative positions of the nose gear and main gear is also disclosed.
摘要:
The aircraft (10) comprises a fuselage (11) and a rhombohedral wing structure (12) comprising front wings (13, 14) mounted on a front wing-root support (17) and rear wings (15, 16) mounted on a rear wing-root support (18). At least two wings (13, 14) support an engine (24, 26) provided with a propeller (25, 27). The rear end of the fuselage supports an engine (21) provided with a propeller (22). The aircraft comprises means (28 to 35) for tilting said engines, the rotary shaft of each of the propellers being tilted between an orientation parallel to the main axis of the fuselage and an orientation perpendicular to the main axis of the fuselage and to an axis extending through the ends of the front wings.
摘要:
In some embodiments, a passenger pod assembly transportation system includes a transportation services provider computing system and a plurality of flying frame flight control systems, wherein the system is configured to receive, at the transportation services provider computing system, a request for transportation of a passenger pod assembly having a current location and a destination; upload a flight plan to a flight control system of a flying frame including an airframe and a propulsion system; dispatch the flying frame to the current location of the passenger pod assembly; couple the flying frame to the passenger pod assembly at the current location of the passenger pod assembly; transport the passenger pod assembly by air from the current location of the passenger pod assembly to the destination of the passenger pod assembly; and decouple the passenger pod assembly from the flying frame at the destination of the passenger pod assembly.
摘要:
An aircraft comprising at least one power plant linked to an airfoil by a power plant support structure comprising a primary structure housed in an aerodynamic fairing. The power plant is formed overhanging behind the airfoil, mostly or wholly above the upper surface of the airfoil. The aircraft comprises a main landing gear comprising at least one landing gear element linked to the airfoil of the aircraft by a support structure. The primary structure and the support structure of the landing gear element are formed by a common structure. The use of such a common structure allows a general optimization of the architecture of the aircraft by virtue of the synergies between the positioning of the power plant, the primary structure of its strut, and the support structure of the main landing gear.
摘要:
An aircraft includes an engine mounted to a wing by a first support, such as a strut, configured to secure the engine to the wing in a position above the wing. A second support, secured to a fuselage portion of the aircraft, is defined by a bridge structure configured to separately and independently secure the engine to the fuselage. The engine is thus secured by the first support directly to the aircraft wing, and via the second support, in concert with the first, to a portion of an aircraft fuselage spaced laterally of the engine-to-wing attachment. In one embodiment the bridge structure, which extends between the engine and fuselage, may be bowed upwardly so as to define a convex curvature when viewed along the longitudinal axis of the aircraft. Such a curvature may, inter alia, optimize aerodynamic spacing of the bridge from the wing to minimize undesirable shock waves.
摘要:
Transformation method of hybrid transportation vehicle for ground and air includes the following transformation and reciprocal steps: Tilting the compensation cover (7) on. Expansion of both whole wings (1) from the transportation vehicle longitudinal position around two vertical axes (2) into the flying position. Expansion of rear parts of wings (1) from the top front parts of wings (1) into the spread flying position by tilting the rear of each wing (1) around a horizontal axis (3). The take-off and landing tilting of wings (1) by an angle of attack alpha=0 to 40° of the wings onset. Front wheels track (5) is reduced by axially shifting the front wheels (5) towards the fuselage. Furthermore, a corresponding hybrid transportation vehicle for ground and air is described which contains reciprocal transformation mechanisms for transformation from a sterling double or four-track automobile into a sterling aircraft for take-off and landing on the ground or water, and vice versa.
摘要:
An aircraft comprising a fuselage which has a central part with a cross section of constant geometry which comprises a floor. The floor comprises two lateral portions which are fixed respectively to two opposite lateral edges of the fuselage and which enclose a central portion to which they are fixed. One of the lateral floor portions is fixed to the central portion so as to allow a relative lateral movement between the two portions in the event of a modification in pressure inside the fuselage. The cross section thus deforms homogeneously when the fuselage is pressurized and the floor is not involved in maintaining the shape of the fuselage.
摘要:
A bracket (24) for connecting a traverse (20) of a landing gear to a cabin of a helicopter. A landing gear retainer (5) is fixed around the traverse (20) coaxially to the longitudinal direction of the traverse (20) and at least one cabin clamp mount (7) is fixed to the cabin. The landing gear retainer (5) is in between the cabin and upper and lower pendulum bolts (12, 13) and upper and lower pendulum bearings (18, 19). A pendulum (9) is in longitudinal direction of the traverse (20) hinged to the landing gear retainer (5). The invention is further related to an application of such brackets (24).
摘要:
Transformation method of hybrid transportation vehicle for ground and air includes the following transformation and reciprocal steps: Tilting the compensation cover (7) on. Expansion of both whole wings (1) from the transportation vehicle longitudinal position around two vertical axes (2) into the flying position. Expansion of rear parts of wings (1) from the top front parts of wings (1) into the spread flying position by tilting the rear of each wing (1) around a horizontal axis (3). The take-off and landing tilting of wings (1) by an angle of attack alpha=0 to 40° of the wings onset. Front wheels track (5) is reduced by axially shifting the front wheels (5) towards the fuselage. Furthermore, a corresponding hybrid transportation vehicle for ground and air is described which contains reciprocal transformation mechanisms for transformation from a sterling double or four-track automobile into a sterling aircraft for take-off and landing on the ground or water, and vice versa.
摘要:
An aircraft nose structure includes a fuselage, a floor for a pressurized space and a nose landing gear bay arranged under the floor, on the opposite side to the space. The bay includes walls that form a pressure barrier, of which there are two lateral panels mechanically secured to the floor by load-reacting members, an upper panel adjacent to the floor and extending between the lateral panels, and a rear panel extending between the upper panel and the fuselage.