摘要:
A cyclic rail-stabilized method of driving an electrophoretic display device (1), wherein a substantially dc-balanced driving waveform is used to effect the various required optical transitions. The driving waveform consists of a plurality of picture potential differences (20), which cause the charged particles (6) of the electrophoretic device (1) to cyclically between extreme optical positions in a single optical path, irrespective of the image sequence required to be displayed, i.e. in order to display each grey scale, it is necessary for the particles (6) to first pass through one of the extreme optical states. In order to minimise the effects of dwell time on the image quality and minimise, or even eliminate, the need to consider image history, shaking pulses (10) are generated immediately prior to each picture potential difference (20).
摘要:
Electophoretic display units (1) are driven with a relatively low amount of power and more efficiently by addressing the pixels (11) only once during a sequence of frame periods. Compared to addressing a pixel (11) each frame period, for signals having a duration of more than one frame period, a large amount of power is saved. During a sequence of frame periods formed by a time-interval (T1-T8), one or more reset pulses (R) or one or more driving pulses (Dr) are provided. The addressing of a line of pixels (11) can be skipped during a sequence of frame periods if all pixels (11) of the line of pixels (11) have to remain unchanged. Signals having a duration of two or more frame periods do not need to be supplied to the pixels (11) each frame period, but need to be supplied only once by addressing the pixels (11) only once during a sequence of frame periods.
摘要:
The present inventions relates to electrophoretic displays that are switchable between a grayscale updating mode (502) and a monochrome updating mode (501). The monochrome updating mode (501) provides for extreme pixel states only (e.g. black and white), whereas the grayscale updating mode (501) provides for intermediate grayscale pixels states as well. According to the present invention, a suitably selected transition signal (504) is applied when switching from the grayscale updating mode (502) to the monochrome updating mode (501). The transition signal (504) involves a drive pulse that serves to reduce the level of remnant DC voltage otherwise occurring in each pixel due to differences in the grayscale updating mode (502) and the monochrome updating mode (501).
摘要:
This invention relates to an electrophoretic display panel, comprising:—a plurality of pixels, each containing an amount of an electrophoretic material comprising charged particles,—a first and a second electrode associated with each pixel for receiving a potential difference as defined by an update drive waveform; and—drive means, for controlling said update drive waveform of each pixel; wherein the charged particles, depending on the applied update drive waveform, are able to occupy a position being one of extreme positions near the electrodes and intermediate positions in between the electrodes for displaying the picture, and wherein said update drive waveform essentially comprises a first shaking portion, a reset portion, a second shaking portion and subsequently a driving portion, wherein the polarity of said first shaking portion is opposite the polarity of the second shaking portion.
摘要:
An electrophoretic display device comprising charged particles in a fluid between two electrodes. Drive means supply the electrodes with drive waveforms in order to cause the charged particles to occupy a desired optical state according to an image to be displayed. In the case where a pixel is required to remain in the same optical state during an image update sequence, at least one voltage pulse is provided at or near the end of the drive signal to compensate for the effect of crosstalk by drawing the charged particles back to the optical state in which the respective picture element is required to remain during that image update sequence.
摘要:
This invention relates to an electrophoretic display panel (1), for displaying an image corresponding to image information, comprising a plurality of pixels (4), each containing an amount of an electrophoretic material, an electrode arrangement (8, 9) associated with each pixel (4) for receiving a potential difference as defined by an update drive waveform (12); and pixel drive means (10), for controlling said update drive waveform (12) of each pixel (4). The display panel further comprises an image information analyser (11) arranged to analyse the image information for a current image frame (13) to be displayed by the display panel with the image information of a previous image frame (14), the image information analyser (11) being arranged to control said pixel drive means (10) so as to, at least in a portion of the display, only update a subgroup of pixels (4) which, as analysed by the image information analyser (11) is arranged to display a greyscale in the current image frame (13) which differs from the greyscale displayed in the previous image frame (14).