Abstract:
A film-chip complex includes a film which includes a connection region along one side, a chip which is mounted on the film, a gate signal line which is disposed on the film, wherein the gate signal line includes a gate lead which is disposed in the connection region and a gate main line which connects the chip with the gate lead and a signal line which is disposed on the film, wherein the signal line includes a signal lead which is disposed in the connection region, a signal main line which extends substantially toward an exterior of the connection region and a signal pad which is connected with the signal main line.
Abstract:
Liquid crystal display devices include a first row of viewable liquid crystal display cells having data inputs electrically connected to a plurality of data lines (D1-Dn), control gates commonly connected to a first gate line (e.g., G1) and storage capacitors (Cst) having first electrodes electrically connected to a zeroth gate line (e.g., G0). A second row of viewable liquid crystal display cells are also provided having data inputs electrically connected to a plurality of data lines (D1-Dn), control gates commonly connected to a second gate line (e.g., G2) and storage capacitors (Cst) having first electrodes electrically connected to a first gate line (e.g., G1). Moreover, to maintain the RC delay value of the zeroth gate line at a level equal to the RC delay values associated with the higher order gate lines (e.g., G1-Gn), a row of nonviewable or "dummy" liquid crystal display cells are provided having data inputs electrically connected to the plurality of data lines, control gates commonly connected to the zeroth gate line and storage capacitors having first electrodes electrically coupled together. This row of nonviewable cells are provided to "mimic" a row of viewable cells so that the RC delay values associated with the zeroth gate line equals the RC delay value associated with the other gate lines in the array. The row of nonviewable cells may also be replaced by a variable resistance device (e.g., potentiometer, resistor ladder, etc.) and a variable capacitance device which are electrically coupled in series between the zeroth gate line and respective reference potentials (e.g., Vcom, GND, etc.). These variable devices are adjusted so that the total effective RC delay values associated with the zeroth gate line equals the RC delay value associated with the other gate lines.