摘要:
A process is disclosed for converting a heavy hydrocarbon oil feedstock to produce a high yield of lower-boiling hydrocarbons, wherein a residuum fraction of the effluent from a hydrogen donor diluent hydrocracking reactor is deasphalted using a low-boiling solvent and at least the highest-boiling fraction of the deasphalted oil is recycled to the hydrogen diluent hydrocracking zone.
摘要:
An integrated upgrading process is disclosed which can be used to lower the specific gravity, viscosity and boiling range of heavy, viscous hydrocarbonaceous oil by means of fractionally distilling the oil, treating its residuum with a hydrogen donor material under hydrocracking conditions, fractionally distilling the effluent from the hydrocracking zone and rehydrogenating that portion boiling from about 180.degree. C. to 350.degree. C. for recycling to the hydrocracking zone. The liquid portion of the oil not recycled can be recombined into a reconstituted crude suitable for transporting by normal crude pipelines.
摘要:
Several procedures are provided herein which reduce the viscosity and density of heavy oils to make them amenable for transportation by pipeline from the field to refineries for further processing. The procedure involves contacting a water emulsion of a heavy oil with carbon monoxide at a pressure range and a temperature range such that a water gas shift reaction takes place to convert the steam and carbon monoxide to hydrogen and carbon dioxide. Simultaneously, a thermal rearrangement takes place, thereby reducing the viscosity and density of the oil without any significant thermal cracking. Under one scheme, at a low temperature range, e.g. below about 400.degree. C., there is substantailly no cracking and minimal molecular changes. Under another scheme, at a higher temperature range, e.g. up to about 460.degree. C., significant cracking and molecular changes take place. Nevertheless under both schemes there is a net production of hydrogen and carbon dioxide, and both hydrogen and carbon dioxide are separated, and may be used in other processes.