Abstract:
The present invention discloses a process and an apparatus for conversion of waste plastic pyrolysis oil into value added products, wherein, the pyrolysis oil is produced from waste plastics by utilizing HCGO as a preheating stream. The process and apparatus as disclosed improves the conventional DCU process in terms of liquid, gaseous yields and reduction in coke yields and without disturbing the hardware of the conventional process along with energy efficient production of pyrolysis oil. The present process and apparatus include a delayed coking process and a system for the delayed coking process which involves the integration of delayed coking system with pyrolysis section and utilization of produced pyrolysis oil by co-processing it with residual heavy hydrocarbon feedstock.
Abstract:
A process for treating heavy oil to provide a treated heavy oil having a reduced density and viscosity, as well as an olefin content that does not exceed 1.0 wt. %. The process comprises separating the initial heavy oil into a first fraction, which in general contains lower-boiling components, and a second fraction. The second fraction comprises a heavy oil having a p-value of at least 5% greater than the p-value of the initial heavy oil prior to separating the initial heavy oil into the first fraction and the second fraction, and the second fraction has an aromaticity that is no more than 5% less than the aromaticity of the initial heavy oil prior to separating the initial heavy oil into the first fraction and the second fraction. The second fraction then is upgraded to reduce the density and viscosity of the heavy oil. After the second fraction is upgraded, it is recombined with at least a portion of the first fraction to provide a treated heavy oil having an olefin content that does not exceed 1.0 wt. %. The separation of the initial heavy oil into first and second fractions enables one to achieve improved reduction of the density and viscosity of the treated heavy oil while maintaining the olefin content at an acceptable level.
Abstract:
The invention relates to a process for converting a hydrocarbon-containing feedstock containing at least one hydrocarbon fraction having a sulphur content of at least 0.1% by weight, an initial boiling temperature of at least 340° C. and a final boiling temperature of at least 440° C., making it possible to obtain a heavy fraction having a sediment content after ageing of less than or equal to 0.1% by weight, said process comprising the following stages: a) a stage of visbreaking the feedstock in at least one maturation chamber (soaker), b) a stage of separating the effluent obtained at the end of stage a), c) a stage of maturation of the heavy fraction originating from stage b), d) a stage of separating the sediments from the heavy fraction originating from the maturation stage c) in order to obtain said heavy fraction.
Abstract:
An apparatus and process are provided for processing hydrocarbon feeds. The process enhances the conversion of hydrocarbon feeds into conversion products, such as ethylene and propylene. In particular, the present techniques utilize two high-severity pyrolysis reactors integrated with another reactor type to convert hydrocarbons to other petrochemical products. The pyrolysis reactors recycle a portion of one of the reactor products to at least one of the pyrolysis reactors to further enhance the process.
Abstract:
A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.
Abstract:
A process for treating a heavy oil which comprises subjecting a heavy oil to cavitation to reduce the viscosity of the heavy oil. The treated heavy oil, which has a reduced viscosity and specific gravity, thus is more pumpable and transportable, which facilitates further processing. The treated heavy oil also can be fractionated with less severity than untreated heavy oil.
Abstract:
An apparatus and method are provided for processing hydrocarbon feeds. The method may pass a pyrolysis feed to a thermal pyrolysis reactor and expose at least a portion of the pyrolysis feed to high-severity operating conditions in a thermal pyrolysis reactor, wherein the thermal pyrolysis reactor is operated at operating conditions that include pressure≧36 psig and provide a reactor product that has a C3+ to C2 unsaturate weight ratio≦0.5.
Abstract:
The invention concerns integration of hydroprocessing and steam cracking. A feed comprising crude or resid-containing fraction thereof is severely hydrotreated and passed to a steam cracker to obtain an olefins product.
Abstract:
A system and method for quantifying opaque inhomogeneities within a fluid sample. The system uses an optical lens system to focus a light beam onto a stage where the sample is introduced. The light beam is directed onto the sample in a pattern such that the intensity of transmitted light is measured as a function of path length. A photo detector measures the transmitted light through the sample. Fluctuations in transmitted light intensity are then correlated with detection of opaque inclusions in the sample. The system also includes an automated program which utilizes these optical concentration measurements to determine the fouling potential of visbroken tars, and regulates the introduction of chemical inhibitors into a visbreaker unit to improve the yield of light streams and/or economic value of product.
Abstract:
This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).