Abstract:
An abrasion-resistant material for the working face of a metallurgical furnace cooling element such as a stave cooler or a tuyere cooler having a body comprised of a first metal. The abrasion-resistant material comprises a macro-composite material including abrasion-resistant particles which are arranged in a substantially repeating, engineered configuration infiltrated with a matrix of a second metal, the particles having a hardness greater than that of the second metal. A cooling element for a metallurgical furnace has a body comprised of the first metal, the body having a facing layer comprising the abrasion-resistant material. A method comprises: positioning the engineered configuration of abrasion-resistant particles in a mold cavity, the engineered configuration located in an area of the mold cavity to define the facing layer; and introducing molten metal into the cavity, the molten metal comprising the first metal of the cooling element body.
Abstract:
An abrasion-resistant material for the working face of a metallurgical furnace cooling element such as a stave cooler or a tuyere cooler having a body comprised of a first metal. The abrasion-resistant material comprises a macro-composite material including abrasion-resistant particles which are arranged in a substantially repeating, engineered configuration infiltrated with a matrix of a second metal, the particles having a hardness greater than that of the second metal. A cooling element for a metallurgical furnace has a body comprised of the first metal, the body having a facing layer comprising the abrasion-resistant material. A method comprises: positioning the engineered configuration of abrasion-resistant particles in a mold cavity, the engineered configuration located in an area of the mold cavity to define the facing layer; and introducing molten metal into the cavity, the molten metal comprising the first metal of the cooling element body.
Abstract:
An aluminum reduction cell having a shell structure with a pair of longitudinally extending sidewalls, a pair of transversely extending endwalls, a bottom wall, and an open top having an upper edge. The aluminum reduction cell also has a transverse support structure with transverse bottom beams located under the shell structure and extending transversely between the sidewalls, each of the transverse bottom beams having a pair of opposed ends. The aluminium reduction cell also has compliant binding elements fixed to the transverse support structure, each extending vertically along an outer surface of one of the sidewalls for applying an inwardly directed force said sidewall. The compliant binding elements are in the form of cantilever springs. Each spring has a metal member with a lower end which is secured to the transverse support structure, and a compliant, upper free end which is movable inwardly and outwardly in response to expansion and contraction of the shell structure.
Abstract:
Supplementary cooling elements in addition to a primary cooling element of a furnace. The supplementary cooling elements, with two or more components, may be inserted from the outside of the furnace into holes that pass through and the primary cooling element such that the cooling elements protrude beyond the inner surface of the primary cooling element. An inner one of the components of the supplementary cooling element may be received by an outer one of the components in a manner that forces the outer component into a thermally conductive pressure connection with the primary cooling element.
Abstract:
It is proposed herein to add supplementary cooling elements to a primary cooling element of a furnace. The supplementary cooling elements, with two or more components, may be inserted from the outside of the furnace into holes that pass through and the primary cooling element such that the cooling elements protrude beyond the inner surface of the primary cooling element. An inner one of the components of the supplementary cooling element may be received by an outer one of the components in a manner that forces the outer component into a thermally conductive pressure connection with the primary cooling element.