Abstract:
According to an example, in a method for displaying visual analytics of entity data, geographic locations of entities may be plotted as first pixel cells on a first region and as second pixel cells on a second region of a geographic map. A determination may be made that the first pixel cells have a higher degree of overlap with each other in the first region compared to the second pixel cells in the second region. The geographic map may be distorted to enlarge the first region and the first pixel cells may be arranged in the first region in a manner that prevents the first pixel cells from overlapping each other. A color value for each of the pixel cells may be determined from a multi-paired color map that represents two variables corresponding to the entities by color and the pixel cells may be caused to be displayed on the distorted geographic map according to the determined respective color values.
Abstract:
A multi-attribute visualization is generated that includes non-overlapped cells that represent respective items. The cells are placed in the visualization according to geographic locations associated with the items, and the cells being assigned visual indicators to represent a first attribute of the items. The cells are arranged in clusters in the visualization, where a size of a particular one of the clusters indicates a second attribute representing a number of cases associated with a corresponding one of the items. Multiple coordinated views of the cells are presented in the visualization, the multiple views corresponding to respective different time intervals.
Abstract:
A pattern of geocoded pixels is generated by accessing data point values, where each data point value includes an attribute value and coordinates of a geographic location. Each data point value corresponds to a geocoded pixel that is positioned on the pattern based on the coordinates of the data point value such some geocoded pixels overlap other geocoded pixels. Different levels of the pattern of geocoded pixels correspond to a different degree of overlap between the geocoded pixels. The different levels of the pattern of geocoded pixels are associated with different magnification levels of a geographic map such that changing a magnification level of the geographic map causes a degree of overlap between the geocoded pixels of the pattern to change.
Abstract:
A pattern of geocoded pixels is generated by accessing data point values, where each data point value includes an attribute value and coordinates of a geographic location. Each data point value corresponds to a geocoded pixel that is positioned on the pattern based on the coordinates of the data point value such some geocoded pixels overlap other geocoded pixels. Different levels of the pattern of geocoded pixels correspond to a different degree of overlap between the geocoded pixels. The different levels of the pattern of geocoded pixels are associated with different magnification levels of a geographic map such that changing a magnification level of the geographic map causes a degree of overlap between the geocoded pixels of the pattern to change.
Abstract:
Example embodiments relate to providing visual analytics of spatial time series data. In example embodiments, sensors may be located at regions within a building for collecting sensor data at regular time intervals. A sensor hierarchy can be generated including sensor nodes that are hierarchically arranged according to a physical infrastructure of the building, where each of the sensor nodes corresponds to a sensor. Sensor data can be obtained from the sensors, and a pixel calendar tree can be generated based on the sensor data and the sensor hierarchy, where the pixel calendar tree is recursively subdivided into tree portions according to a proportion of the sensor data attributable to each of the sensors. The pixel calendar tree can be displayed, where each of the tree portions includes time series sensor data of a corresponding region that is generated based on the sensor data.
Abstract:
According to an example, in a method for displaying visual analytics of entity data, geographic locations of entities may be plotted as first pixel cells on a first region and as second pixel cells on a second region of a geographic map. A determination may be made that the first pixel cells have a higher degree of overlap with each other in the first region compared to the second pixel cells in the second region. The geographic map may be distorted to enlarge the first region and the first pixel cells may be arranged in the first region in a manner that prevents the first pixel cells from overlapping each other. A color value for each of the pixel cells may be determined from a multi-paired color map that represents two variables corresponding to the entities by color and the pixel cells may be caused to be displayed on the distorted geographic map according to the determined respective color values.
Abstract:
Example embodiments relate to providing visual analytics of spatial time series data. In example embodiments, sensors may be located at regions within a building for collecting sensor data at regular time intervals. A sensor hierarchy can be generated including sensor nodes that are hierarchically arranged according to a physical infrastructure of the building, where each of the sensor nodes corresponds to a sensor. Sensor data can be obtained from the sensors, and a pixel calendar tree can be generated based on the sensor data and the sensor hierarchy, where the pixel calendar tree is recursively subdivided into tree portions according to a proportion of the sensor data attributable to each of the sensors. The pixel calendar tree can be displayed, where each of the tree portions includes time series sensor data of a corresponding region that is generated based on the sensor data.
Abstract:
Visual analytics of multivariate data using a cell based calendar matrix having a visual folding mechanism can include forming a time based layout that is divided into cells where the cells represent measurement intervals and a color of the cells represents a measurement value, folding the time based layout into a cell based calendar matrix with other time based layouts that include other cells that represent corresponding measurement intervals in different calendar units of the cell based calendar matrix, and displaying the cell based calendar matrix in a display such that the cells of the time based layout align by time with the other cells of the other time based layouts.
Abstract:
Visual analytics for multivariate session data using concentric rings with overlapping periods includes displaying an interactive graph in a display. The interactive graph includes at least a portion of multiple concentric rings where each one of at least some of the multiple concentric rings represents periodic time units. At least some of the multiple concentric rings are divided into cells where the cells represent smaller time periods than the time units. A color of each of the cells represents a value of a metric. Also, an overlapping period ring displayed with the multiple concentric rings where the overlapping period ring comprises segments that represent overlapping metrics from the cells of the concentric rings that correspond with the segments.
Abstract:
Example embodiments relate to providing visual analytics of temporal-spatial relationships. In example embodiments, power meters may be located at regions within a building for collecting power consumption data at regular intervals. The power consumption data can be recursively processed to generate a pixel calendar tree by using a power meter hierarchy to subdivide the pixel calendar tree into tree portions according to a proportion of the power consumption data attributed to each of power meter nodes, where the tree portions are arranged in the pixel calendar tree according to an importance of the proportion; generating pixel cells in the pixel calendar tree that each represent a day in the power consumption data; and generating cell borders that each surround one of the pixel cells. At this stage, a pixel calendar display of a physical infrastructure of the building that includes the pixel cells and the cell borders can be generated.