Abstract:
A unified visualization interface is disclosed. One example is a system including an association module, a multicasting module, a data sharing module, and a unified visualization interface. The association module associates an identified event in a first visualization system with a visualization function. The multicasting module stores event data related to the identified event and the associated visualization function in a shared data source, and multicasts the identified event to a second visualization system. The data sharing module associates the event data with characteristics of the first visualization system, and shares, in response to the multicast of the identified event, the shared data source with the second visualization system. The unified visualization interface automatically invokes, without software changes, the second visualization system in response to the multicast of the identified event, the invoking based on the shared data source including the characteristics of the first visualization system.
Abstract:
Example embodiments relate to providing pixel-based visualizations of time series data using nested helices. In example embodiments, helix portions in the time series data may be identified according to a measured time interval, where each of the helix portions represents the measured time interval in the time series data. A helical time period may then be determined and used as a helical revolution in a helical pixel representation. At this stage, the helical pixel representation may be generated using the helix portions, where proximate helix portions along a common line parallel to an axis of the helical pixel representation are chronologically separated by the helical time period.
Abstract:
Example embodiments relate to providing visual analytics of spatial time series data. In example embodiments, sensors may be located at regions within a building for collecting sensor data at regular time intervals. A sensor hierarchy can be generated including sensor nodes that are hierarchically arranged according to a physical infrastructure of the building, where each of the sensor nodes corresponds to a sensor. Sensor data can be obtained from the sensors, and a pixel calendar tree can be generated based on the sensor data and the sensor hierarchy, where the pixel calendar tree is recursively subdivided into tree portions according to a proportion of the sensor data attributable to each of the sensors. The pixel calendar tree can be displayed, where each of the tree portions includes time series sensor data of a corresponding region that is generated based on the sensor data.
Abstract:
Similarities between events that include a plurality of dimensions are computed, the similarities computed based on binary comparisons between the events and based on user-specified weights for the dimensions. Multidimensional scaling (MDS) values are calculated based on the computed similarities between the events. A graphical visualization is generated of a temporal plot of the events, the temporal plot comprising a first axis corresponding to time, and a second axis corresponding to the MDS values, and the temporal plot representing overlapping time slices each containing pixels representing a respective subset of the events.
Abstract:
Visually interactive identification of a cohort of similar data objects is disclosed. One example is a system including a data processor to access a plurality of data objects, each data object comprising a plurality of numerical components, where each component represents a data feature of a plurality of data features, and to identify, for each data feature, a feature distribution of the numerical components. A selector selects a sub-plurality of the data features of a query object, where a given data feature is selected if the component representing the given data feature is a peak for the feature distribution. An evaluator determines a similarity measure based on the sub-plurality of the data features. An interaction processor iteratively processes selection of a sub-plurality of the data features based on domain knowledge, and identifies, based on the similarity measures, a cohort of data objects similar to the query object.
Abstract:
A pattern of geocoded pixels is generated by accessing data point values, where each data point value includes an attribute value and coordinates of a geographic location. Each data point value corresponds to a geocoded pixel that is positioned on the pattern based on the coordinates of the data point value such some geocoded pixels overlap other geocoded pixels. Different levels of the pattern of geocoded pixels correspond to a different degree of overlap between the geocoded pixels. The different levels of the pattern of geocoded pixels are associated with different magnification levels of a geographic map such that changing a magnification level of the geographic map causes a degree of overlap between the geocoded pixels of the pattern to change.
Abstract:
Example embodiments relate to providing visual analytics of spatial time series data. In example embodiments, sensors may be located at regions within a building for collecting sensor data at regular time intervals. A sensor hierarchy can be generated including sensor nodes that are hierarchically arranged according to a physical infrastructure of the building, where each of the sensor nodes corresponds to a sensor. Sensor data can be obtained from the sensors, and a pixel calendar tree can be generated based on the sensor data and the sensor hierarchy, where the pixel calendar tree is recursively subdivided into tree portions according to a proportion of the sensor data attributable to each of the sensors. The pixel calendar tree can be displayed, where each of the tree portions includes time series sensor data of a corresponding region that is generated based on the sensor data.