Abstract:
Provided are a method for treating water and a flocculant used in the method. The method includes the steps of adding a first polymer compound formed by multiply binding a first repeating unit into water to be treated, and adding a second polymer compound formed by multiply binding a second repeating unit into the water. The first repeating unit includes a first linked main chain which constructs a main chain via repeatedly bound one another, and an adsorption site directly or indirectly bound to the first linked main chain so as to adsorb organic compounds contained in the water to be treated. The second repeating unit has a similar structure to the first repeating unit except that the number of carbon atoms in the second linked main chain is different from that in the first linked main chain. The flocculant includes the first and second polymer compounds.
Abstract:
An object is to provide a super-conducting coil and a magnetic resonance imaging device that are quench-free by reducing Joule heat generated upon occurrence of separation of members even in a high magnetic field. The super-conducting coil in accordance with the present invention includes a spool and a super-conducting wire wound around the spool. The coil further includes, between the spool and the super-conducting wire, a first resin layer containing thermoplastic resin, a second resin layer containing thermosetting resin, and a mixed layer, the mixed layer being positioned between the first resin layer and the second resin layer and containing a mixture of the thermoplastic resin and the thermosetting resin.
Abstract:
The present invention provides a coagulation processing method capable of adding a sufficiently-dissolved coagulant aqueous solution to being processed water and materializing high-efficiency coagulation processing, a coagulation processing unit, and a water processing apparatus.A coagulation processing unit includes a coagulant aqueous solution storage tank 1 to have a stirrer 5 and store a coagulant aqueous solution, a particle size distribution measurement device 50 to measure the particle size distribution of the coagulant aqueous solution in the coagulant aqueous solution storage tank 1, a coagulation tank 11 to mix being processed water with an added coagulant aqueous solution and form a coagulation, a coagulation removing section 9 to remove the coagulation from the being processed water containing the coagulation, and a control section 6 to control the stirrer 5 so that a median size in the particle size distribution of the coagulant aqueous solution may be not more than 1.0 μm on the basis of a measured particle size distribution.