Abstract:
A mount system provides vibration isolation and support through a hybrid hard-soft configuration. The mount system includes a frame and a body connected with the frame. A first coupling element is provided on the body and defines a first opening. A second coupling element is provided on the frame and defines a second opening. A pin extends through the first and second openings to couple the body to the frame. At least one of the first and/or second openings operates as a damping hole with a series of slits disposed about the damping hole, so that the damping hole with the slits is configured to deflect to reduce the transmission of vibrations between the body and the frame.
Abstract:
A system and method is provided that combines fan bypass components and minimizes assembly interfaces in a turbofan engine. The system and method provide a front frame structure of reduced weight that slidably installs/removes from within the combined fan bypass components.
Abstract:
A thrust reverser system for a gas turbine engine includes a transcowl movable between a stowed position, a deployed position and a partially deployed position between the stowed position and the deployed position by at least one actuator. The system includes a temperature sensor and at least one resistance sensor. The thrust reverser system includes a controller, having a processor, that: outputs one or more control signals to move the transcowl to the partially deployed position; determines whether a temperature associated with the transcowl exceeds a temperature threshold; outputs one or more control signals to move the transcowl from the partially deployed position to the stowed position; determines whether the transcowl has encountered resistance; and based on the determination, outputs one or more control signals to stop a movement of the transcowl and outputs the one or more control signals to move the transcowl to the partially deployed position.
Abstract:
A coupling apparatus for use in sealingly connecting a first fluid flow path to a second fluid flow path. The coupling apparatus includes a rigid fluid flow channel having a first end and a second end, wherein the fluid flow channel is substantially rigid in an axial direction and a radial direction, a first sealing terminus that is rigidly connected to the first end and that is configured for sealing with the first fluid flow path, and a second sealing terminus that is slidingly disposed about the second end such that the second sealing terminus is configured for relative movement with respect to the second end, and wherein the second sealing terminus is further configured for sealing with the second fluid flow path. The coupling apparatus further includes a flexible coupler connected to both the first sealing terminus and the second sealing terminus and surrounding the fluid flow channel, wherein the coupler is relatively more flexible in the axial direction and the radial direction as compared to the fluid flow channel.
Abstract:
A system and method is provided for an integrated aircraft turbofan engine outer flowpath ducting and front frame that minimizes assembly interfaces and reduces overall aircraft engine weight. The system and method provide an integrated turbofan engine outer flowpath ducting and front frame system that decouples the fairing/aerodynamic duties from the struts/weight bearing duties thereby enabling efficient distribution of mechanical load.
Abstract:
A thrust reverser system includes at least one hinge coupled to the thrust reverser system so as to be adjacent to at least one opening defined in the thrust reverser system. The thrust reverser system includes at least one body coupled to the at least one hinge. The at least one body has a first body end and an opposing second body end. The body pivotally coupled to the hinge such that a portion of the body is positionable within the at least one opening and the body includes at least one counterweight at the first body end or the second body end. The body is positioned within the at least one opening based on an operating condition of the gas turbine engine.
Abstract:
A thrust reverser system for a gas turbine engine includes a transcowl movable between a stowed position, a deployed position and a partially deployed position between the stowed position and the deployed position by at least one actuator. The system includes a temperature sensor and at least one resistance sensor. The thrust reverser system includes a controller, having a processor, that: outputs one or more control signals to move the transcowl to the partially deployed position; determines whether a temperature associated with the transcowl exceeds a temperature threshold; outputs one or more control signals to move the transcowl from the partially deployed position to the stowed position; determines whether the transcowl has encountered resistance; and based on the determination, outputs one or more control signals to stop a movement of the transcowl and outputs the one or more control signals to move the transcowl to the partially deployed position.
Abstract:
A system and method is provided that combines fan bypass components and minimizes assembly interfaces in a turbofan engine. The system and method provide a front frame structure of reduced weight that slidably installs/removes from within the combined fan bypass components.
Abstract:
A system and method is provided for an integrated aircraft turbofan engine outer flowpath ducting and front frame that minimizes assembly interfaces and reduces overall aircraft engine weight. The system and method provide an integrated turbofan engine outer flowpath ducting and front frame system that decouples the fairing/aerodynamic duties from the struts/weight bearing duties thereby enabling efficient distribution of mechanical load.
Abstract:
A thrust reverser system for a gas turbine engine includes at least one hinge coupled to the thrust reverser system so as to be adjacent to at least one opening defined in the thrust reverser system. The thrust reverser system includes at least one body coupled to the at least one hinge. The at least one body has a first body end and an opposing second body end. The body pivotally coupled to the hinge such that a portion of the body is positionable within the at least one opening and the body includes at least one counterweight at the first body end or the second body end. The body is positioned within the at least one opening based on an operating condition of the gas turbine engine.