Abstract:
In a method for emulation of neuromorphic hardware on a computer processor, the neuromorphic hardware including computing circuits, the computing circuits including neurons and synapses connecting the neurons, the neurons being configured to communicate to each other through the synapses via spikes, the computing circuits being configured to execute in parallel in increments of time, the method includes, for each said time increment, emulating processing of the synapses, emulating processing of the neurons, and recording by the processor the next ones of the spikes for a subset of the neurons on a non-transitory physical medium. The processing of the synapses includes receiving previous ones of the spikes at presynaptic ends of the synapses, and transmitting the received previous ones of the spikes to postsynaptic ends of the synapses. The processing of the neurons includes receiving current ones of the spikes and generating next ones of the spikes.
Abstract:
Described is a system for controlling epidural spinal cord stimulation. Using an Unscented Kalman Filter (UKF), the system receives sensed physiological signals from a subject and, based on the sensed physiological signals, estimating an unobservable state of a target area on the subject. A central pattern generator is then used to generate a stimulation pattern based on the unobservable state. The stimulation pattern is applied to the target area (e.g., spinal cord) of the subject using an electrode array. Receiving feedback, the UKF continuously updates a model of the spinal cord, which results in adjustment of the stimulation pattern as necessary.
Abstract:
A neural model for reinforcement-learning and for action-selection includes a plurality of channels, a population of input neurons in each of the channels, a population of output neurons in each of the channels, each population of input neurons in each of the channels coupled to each population of output neurons in each of the channels, and a population of reward neurons in each of the channels. Each channel of a population of reward neurons receives input from an environmental input, and is coupled only to output neurons in a channel that the reward neuron is part of. If the environmental input for a channel is positive, the corresponding channel of a population of output neurons are rewarded and have their responses reinforced, otherwise the corresponding channel of a population of output neurons are punished and have their responses attenuated.
Abstract:
A neural model for reinforcement-learning and for action-selection includes a plurality of channels, a population of input neurons in each of the channels, a population of output neurons in each of the channels, each population of input neurons in each of the channels coupled to each population of output neurons in each of the channels, and a population of reward neurons in each of the channels. Each channel of a population of reward neurons receives input from an environmental input, and is coupled only to output neurons in a channel that the reward neuron is part of. If the environmental input for a channel is positive, the corresponding channel of a population of output neurons are rewarded and have their responses reinforced, otherwise the corresponding channel of a population of output neurons are punished and have their responses attenuated.
Abstract:
Described is a system and method for generating a unique signature for a space. During operation, the system causes a mobile platform to make one or more passes through the space along a repeatable path. While moving through the space, the system captures an image of the space around the mobile platform. A filter is applied to the image to generate vertical bins, the vertical bins being one-dimensional vectors of the space around the mobile platform. The one-dimensional vectors are combined over time to create a two-dimensional trace, with the two-dimensional trace being a unique signature for the space.
Abstract:
Described is a system for automatically tuning the sensor feedback of a prosthetic device. The system comprises an electrode or plurality of electrodes in contact with a peripheral nerve of a user wearing a prosthetic device for administering the sensory feedback and an additional stimulus that evokes a muscle response in the user. A sensor is used to measure the muscle response. One or more processors generate a current stimulation pattern that encodes a posture of the prosthetic device. The current stimulation pattern is used in a spinal cord simulation to produce predicted muscle activations. Using the muscle response and the predicted muscle activations, an adjusted stimulation pattern is determined.