Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal in an optical transport network. In the transmission method, a received client signal is mapped into a variable-rate container OTU-N, wherein a rate of the OTU-N is N times as high as a preset reference rate; and then, the variable-rate container OTU-N is split into N optical sub-channel transport units OTUsubs by column, where a rate of each OTUsub equals to the reference rate; next, the N optical sub-channel transport units OTUsubs are modulated onto one or more optical carriers; at last, the one or more optical carriers is transmitted through a fiber.
Abstract:
The present invention discloses a service transmission method, a network device, and a network system. The method includes: obtaining, by a first network device, a client service of FlexE, and obtaining clock information corresponding to the client service; mapping, by the first network device, the client service and the clock information to a timeslot of a FlexE frame, where the client service and the clock information occupy a same timeslot and/or different timeslots; and sending, by the first network device, the FlexE frame to a second network device. Therefore, service clock information can be transparently transmitted in flexible Ethernet by using the method of the present invention.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal in an optical transport network. In the transmission method, a received client signal is mapped into a variable-rate container OTU-N, wherein a rate of the OTU-N is N times as high as a preset reference rate; and then, the variable-rate container OTU-N is split into N optical sub-channel transport units OTUsubs by column, where a rate of each OTUsub equals to the reference rate; next, the N optical sub-channel transport units OTUsubs are modulated onto one or more optical carriers; at last, the one or more optical carriers is transmitted through a fiber.
Abstract:
Method and apparatus for transporting client signals in an OTN are illustrated. In one embodiment, the method includes: mapping a client signal into a first Optical Channel Data Tributary Unit (ODTU) frame including an ODTU payload area and an ODTU overhead area, such that a plurality of n-bit data units of the client signal are inserted into the ODTU payload area and number information is inserted into the ODTU overhead area; mapping the first ODTU frame into the OPUk frame, such that the plurality of n-bit data units are mapped into an OPUk payload part occupying at least one Tributary Slot (TS) of the OPUk payload area and the number information of the ODTU overhead area is mapped into a first OPUk overhead part of the OPUk frame; forming an Optical Channel Transport Unit-k (OTUk) frame including the OPUk frame for transmission.
Abstract:
The embodiments of the present invention relate to the field of communications technologies, and disclose a lossless adjustment method of ODUflex channel bandwidth and an ODUflex channel. The lossless adjustment method includes: respectively adjusting, according to bandwidth adjustment indication request information, a time slot occupied by an ODUflex frame in a higher order optical channel data unit at an egress side of each network node on an ODUflex channel; and adjusting, according to rate adjustment indication information, a transmission rate of the ODUflex frame of each network node on the ODUflex channel, to enable the transmission rate of each network node on the ODUflex channel to be unified.
Abstract:
Method and apparatus for transporting client signals in an MN are illustrated. In one embodiment, the method includes: mapping a client signal into a first Optical Channel Data Tributary Unit (ODTU) frame including an ODTU payload area and an ODTU overhead area, such that a plurality of n-bit data units of the client signal are inserted into the ODTU payload area and number information is inserted into the ODTU overhead area; mapping the first ODTU frame into the OPUk frame, such that the plurality of n-bit data units are mapped into an OPUk payload part occupying at least one Tributary Slot (TS) of the OPUk payload area and the number information of the ODTU overhead area is mapped into a first OPUk overhead part of the OPUk frame; forming an Optical Channel Transport Unit-k (OTUk) frame including the OPUk frame for transmission.
Abstract:
The embodiments of the present invention relate to the field of communications technologies, and disclose a lossless adjustment method of ODUflex channel bandwidth and an ODUflex channel. The lossless adjustment method includes: respectively adjusting, according to bandwidth adjustment indication request information, a time slot occupied by an ODUflex frame in a higher order optical channel data unit at an egress side of each network node on an ODUflex channel; and adjusting, according to rate adjustment indication information, a transmission rate of the ODUflex frame of each network node on the ODUflex channel, to enable the transmission rate of each network node on the ODUflex channel to be unified.
Abstract:
The present invention provides a method, apparatus and system for transmitting and receiving a client signal. A client signal is mapped to a low-order ODU via a GFP scheme, wherein the low-order ODU is sized to M equal sized timeslots of a high-order OPUk, wherein the high-order OPUk is divided into N equal sized timeslots, wherein M is any one of a group from 1 to N; wherein if k=2, then N=8, if k=3, then N=32 and if k=4, then N=80. The low-order ODU with the client signal is mapped to M equal sized timeslots of the high-order OPUk via a GMP scheme; and an OTU with the high-order OPUk and overheads is formed, and then the OTU is transmitted.
Abstract:
Method and apparatus for transporting client signals in an OTN are illustrated. In one embodiment, the method includes: mapping a client signal into a first Optical Channel Data Tributary Unit (ODTU) frame including an ODTU payload area and an ODTU overhead area, such that a plurality of n-bit data units of the client signal are inserted into the ODTU payload area and number information is inserted into the ODTU overhead area; mapping the first ODTU frame into the OPUk frame, such that the plurality of n-bit data units are mapped into an OPUk payload part occupying at least one Tributary Slot (TS) of the OPUk payload area and the number information of the ODTU overhead area is mapped into a first OPUk overhead part of the OPUk frame; forming an Optical Channel Transport Unit-k (OTUk) frame including the OPUk frame for transmission.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal in an optical transport network. In the transmission method, a received client signal is mapped into a variable-rate container OTU-N, wherein a rate of the OTU-N is N times as high as a preset reference rate; and then, the variable-rate container OTU-N is split into N optical stab-channel transport units OTUsubs by column, where a rate of each OTUsub equals to the reference rate; next, the N optical sub-channel transport units OTUsubs are modulated onto one or more optical carriers; at last, the one or more optical carriers is transmitted through a fiber.