Abstract:
A method, an apparatus, and a transceiver for cancelling multi-carrier transmission interference are provided. The method includes: collecting a high order intermodulation signal in radio frequency signals output by a transmitter; processing the high order intermodulation signal so as to generate a first digital signal; establishing a high order intermodulation model by using the first digital signal and a first baseband signal output by the transmitter; generating a second digital signal by using a coefficient of the high order intermodulation model and a second baseband signal output by the transmitter; and counteracting interference in a digital signal output by a receiver with the second digital signal. By using the present invention, high order intermodulation interference of a multi-carrier transmitter on a receiver can be effectively canceled, and therefore, difficulty in duplexer design and requirements on a suppression degree are reduced.
Abstract:
This application relates to a signal sending method, a signal processing method, and a radar apparatus, and pertains to the field of sensor technologies. The radar apparatus includes at least three transmit antennas. The signal sending method includes: determining at least two transmit antenna groups of the radar apparatus, where each transmit antenna group includes at least one transmit antenna; sending signals by using the at least two transmit antenna groups, where the at least two transmit antenna groups send signals in a TDM manner, and a plurality of transmit antennas included in each transmit antenna group including a plurality of transmit antennas in the at least two transmit antenna groups send signals in a CDM manner. Embodiments of this application may be applied to related fields such as autonomous driving, assisted driving, intelligent driving, intelligent connected vehicle, intelligent vehicle, and electric mobile/electric vehicle.
Abstract:
An interference cancellation method and apparatus and also a filter are disclosed to cancel the interfering signals leaked to the receiving channel, and enable the receiving channel to suppress the transmitted signal. The method includes: dividing a transmitted signal into a first transmitted signal and a second transmitted signal, and then inputting the first transmitted signal into a first transmitting filter and inputting the second transmitted signal into a second transmitting filter symmetric to the first transmitting filter; adjusting the first interfering signal and the second interfering signal to make opposite phases of the signals; and combining the signals of opposite phases. The method provided herein can cancel the interfering signals leaked to the receiving channel, the receiving channel suppresses the transmitted signal effectively, and the interference caused by the transmitted signal onto the received signal is cancelled.
Abstract:
This application provides a signal processing method and apparatus, may be applied to the field of automatic driving or intelligent driving, in particular to millimeter wave radar target detection. The method includes: A detection apparatus receives at least one first signal corresponding to a first transmit antenna, and performs beamforming processing on the at least one first signal to generate a first beam; and determines information about the first target based on the first beam and a phase of a second beam corresponding to at least one second signal. By this solution, the detection apparatus such as a single-input multiple-output SIMO radar, a multiple-input multiple-output MIMO radar or a cooperative radar, may determine, based on a phase of the first beam and the phase of the second beam, a Doppler phase difference, and determine, based on the Doppler phase difference, the information about the first target.
Abstract:
A method, an apparatus, and a transceiver for cancelling multi-carrier transmission interference are provided. The method includes: collecting a high order intermodulation signal in radio frequency signals output by a transmitter; processing the high order intermodulation signal so as to generate a first digital signal; establishing a high order intermodulation model by using the first digital signal and a first baseband signal output by the transmitter; generating a second digital signal by using a coefficient of the high order intermodulation model and a second baseband signal output by the transmitter; and counteracting interference in a digital signal output by a receiver with the second digital signal. By using the embodiments of the embodiments of the invention, high order intermodulation interference of a multi-carrier transmitter on a receiver can be effectively canceled, and therefore, difficulty in duplexer design and requirements on a suppression degree are reduced.
Abstract:
Embodiments of the present invention provide a transmitter. The transmitter includes: a dual-band input circuit including at least two band input ends, performing DPD processing on an input baseband signal, and outputting the baseband signal; a modulo circuit, performing modulo processing on the input baseband signal, and outputting the baseband signal; a signal decomposition circuit, receiving the baseband signal input by the dual-band input circuit and a baseband signal modulus value input by the modulo circuit, and performing decomposition to obtain multiple decomposed signals; a modulation circuit, receiving the multiple decomposed signals, performing processing, modulating two signals obtained after processing to corresponding working frequencies, and outputting the two signals to a dual-band power amplifier. In comparison with a single-input dual-band power amplifier, when a dual-input dual-band power amplifier transmits signals in two bands concurrently, overall transmission efficiency of a dual-band transmitter can be obviously improved.