Abstract:
An antenna device includes: an antenna array configured to radiate or receive an electromagnetic wave signal; a feed network configured to connect the antenna array and a signal multiplexer; at least one signal multiplexer configured to divide one path of a signal from the feed network into at least two paths of a signal, or combine at least two paths of a signal to one path of a signal and transmit the one path of a signal to the feed network; and at least two interface modules connected to an active module and configured to receive a signal sent from the passive module or the active module, or send a signal to the active module. The antenna device can be used for sharing the antenna array and other parts in the active antenna systems.
Abstract:
A method, an apparatus, and a transceiver for cancelling multi-carrier transmission interference are provided. The method includes: collecting a high order intermodulation signal in radio frequency signals output by a transmitter; processing the high order intermodulation signal so as to generate a first digital signal; establishing a high order intermodulation model by using the first digital signal and a first baseband signal output by the transmitter; generating a second digital signal by using a coefficient of the high order intermodulation model and a second baseband signal output by the transmitter; and counteracting interference in a digital signal output by a receiver with the second digital signal. By using the embodiments of the embodiments of the invention, high order intermodulation interference of a multi-carrier transmitter on a receiver can be effectively canceled, and therefore, difficulty in duplexer design and requirements on a suppression degree are reduced.
Abstract:
Embodiments of the present invention provide an antenna apparatus, a base station and a communications system. The antenna apparatus includes: an antenna part, including a common radome; an active part, connected to the antenna part and including at least one active module, where each active module includes at least one antenna element, and an element reflector and a phase shifter and a radio frequency module that are corresponding to each antenna element, where the element reflector of the at least one active module is configured to implement an antenna function; and a common part, connected to the active part and the antenna part, and shared by the at least one active module in the active part, where the common part includes at least one common module. By using the above antenna apparatus, each radio frequency module can be flexibly configured, so as to simplify onsite replacement and maintenance operations.
Abstract:
This application provides a communication apparatus. The communication apparatus includes at least one transmit antenna unit, at least one receive antenna unit, and a signal processing unit. The signal processing unit is configured to: control the at least one transmit antenna unit and the at least one receive antenna unit to communicate with at least one first terminal on a first frequency band; control at least one target transmit antenna unit to send a radar signal on a second frequency band; and control at least one target receive antenna unit to receive a first echo signal on the second frequency band. The at least one transmit antenna unit includes the at least one target transmit antenna unit. The at least one receive antenna unit includes the at least one target receive antenna unit. The first frequency band and the second frequency band do not overlap.
Abstract:
Embodiments of the disclosure provide a radio access method, apparatus, and system, which can implement mutual transmission and processing of collaborative data between sites on a basis of low-cost deployment and high availability, and improve network performance. In the method, a basic DU is deployed in a site, and the method may include: receiving, by a switching device, a first data packet sent by a first basic DU; determining to send the first data packet to a second basic DU for collaborative processing; and sending the first data packet to the second basic DU, so that the second basic DU performs collaborative processing on the first data packet and a second data packet, where the second data packet and the first data packet are of a same data type. Embodiments of the disclosure are applicable to the communications field.
Abstract:
Embodiments of the present application disclose an antenna device and system. The antenna device includes: an antenna array, configured to radiate or receive an electromagnetic wave signal; a feed network, configured to connect the antenna array and a signal multiplexer; at least one signal multiplexer, configured to divide one path of signal from the feed network into at least two paths of signal, or combine at least two paths of signal to one path of signal and transmit the one path of signal to the feed network; and at least two interface modules connected to a passive module or an active module, is configured to receive a signal sent from the passive module or the active module, or send a signal to the passive module or the active module. The present application can be used for sharing the antenna array and other parts in the active and passive antenna systems.
Abstract:
A method, an apparatus, and a transceiver for cancelling multi-carrier transmission interference are provided. The method includes: collecting a high order intermodulation signal in radio frequency signals output by a transmitter; processing the high order intermodulation signal so as to generate a first digital signal; establishing a high order intermodulation model by using the first digital signal and a first baseband signal output by the transmitter; generating a second digital signal by using a coefficient of the high order intermodulation model and a second baseband signal output by the transmitter; and counteracting interference in a digital signal output by a receiver with the second digital signal. By using the present invention, high order intermodulation interference of a multi-carrier transmitter on a receiver can be effectively canceled, and therefore, difficulty in duplexer design and requirements on a suppression degree are reduced.
Abstract:
An antenna system is disclosed. In the antenna system, a first antenna element array includes multiple antenna elements, where the antenna elements are configured to receive and transmit signals in two different polarization directions; the first combiner-splitter is configured to combine signals, received by the multiple antenna elements; the active module is configured to receive combined signals in the two different polarization directions, and perform frequency translation on the combined signals to obtain baseband signals; at least one pair of receiving channels in the antenna system corresponds to a second antenna apparatus, and are configured to receive signals output by the second antenna apparatus in the two different polarization directions; and the active module is further configured to perform frequency translation on the signals received by the at least one pair of receiving channels to obtain baseband signals. In this way, the network performance gain is improved.
Abstract:
An interference cancellation method and apparatus and also a filter are disclosed to cancel the interfering signals leaked to the receiving channel, and enable the receiving channel to suppress the transmitted signal. The method includes: dividing a transmitted signal into a first transmitted signal and a second transmitted signal, and then inputting the first transmitted signal into a first transmitting filter and inputting the second transmitted signal into a second transmitting filter symmetric to the first transmitting filter; adjusting the first interfering signal and the second interfering signal to make opposite phases of the signals; and combining the signals of opposite phases. The method provided herein can cancel the interfering signals leaked to the receiving channel, the receiving channel suppresses the transmitted signal effectively, and the interference caused by the transmitted signal onto the received signal is cancelled.
Abstract:
An antenna apparatus is provided, including: an antenna component that is arranged on a passive side of the antenna apparatus; a radio frequency unit that is arranged on an active side of the antenna apparatus, formed by at least one independent radio frequency module, and connected to the antenna component to form an active antenna, where each radio frequency module includes a radio frequency plate; and a common unit that is arranged on the active side of the antenna apparatus and connected to the radio frequency unit and the antenna component. With the preceding antenna apparatus, each radio frequency module can be flexibly configured, thereby satisfying the requirements for different product portfolios and further simplifying field replacement and maintenance.