Abstract:
A receiving device and signal processing method, the method including monitoring quality parameters of N received signals in real time, wherein the N received signals are obtained by N receive antennas from a same transmit antenna, predicting, according to the quality parameters, whether quality of a first combined signal that is obtained after combination processing is performed on the N received signals is superior to quality of a received signal whose quality is optimal in the N received signals, determining the first combined signal as a to-be-processed signal in response to predicting that the quality of the first combined signal is superior to the quality of the received signal, and determining a to-be-processed signal according to M received signals of the N received signals in response to predicting that the quality of the first combined signal is inferior to the quality of the received signal.
Abstract:
A receiving device and signal processing method, the method including monitoring quality parameters of N received signals in real time, wherein the N received signals are obtained by N receive antennas from a same transmit antenna, predicting, according to the quality parameters, whether quality of a first combined signal that is obtained after combination processing is performed on the N received signals is superior to quality of a received signal whose quality is optimal in the N received signals, determining the first combined signal as a to-be-processed signal in response to predicting that the quality of the first combined signal is superior to the quality of the received signal, and determining a to-be-processed signal according to M received signals of the N received signals in response to predicting that the quality of the first combined signal is inferior to the quality of the received signal.
Abstract:
The present invention relates to the field of communications technologies and discloses a data processing method and apparatus to obtain a DPD non-linear distortion compensation coefficient under a QPSK mode. The embodiments of the present invention receive a first data flow, and perform interpolation into the first data flow to obtain a second data flow; receive a third data flow, and calculate a data flow signal quality difference between the third data flow and the second data flow; and obtain a DPD non-linear distortion compensation coefficient according to the data flow signal quality difference and the third data flow or the second data flow. The embodiments of the present invention are applicable to the scenarios of obtaining a DPD non-linear distortion compensation coefficient in QPSK mode.
Abstract:
The present invention relates to the field of communications technologies and discloses a data processing method and apparatus to obtain a DPD non-linear distortion compensation coefficient under a QPSK mode. The embodiments of the present invention receive a first data flow, and perform interpolation into the first data flow to obtain a second data flow; receive a third data flow, and calculate a data flow signal quality difference between the third data flow and the second data flow; and obtain a DPD non-linear distortion compensation coefficient according to the data flow signal quality difference and the third data flow or the second data flow. The embodiments of the present invention are applicable to the scenarios of obtaining a DPD non-linear distortion compensation coefficient in QPSK mode.
Abstract:
An apparatus for signal bandwidth compensation is disclosed. The apparatus includes: a digital predistortion filtering unit, a compensation filter, a conversion unit, and a power amplifier; where the digital predistortion filtering unit receives an original signal, performs predistortion processing on the original signal; the compensation filter receives the predistortion signal, compensates for distortion caused during a process of transmitting the predistortion signal to the power amplifier, and outputs a compensated predistortion signal to the conversion unit; the conversion unit receives the compensated predistortion signal, converts the compensated predistortion signal into an analog signal, performs frequency mixing processing, and outputs a predistortion signal experiencing the frequency mixing to the power amplifier; the power amplifier receives the predistortion signal experiencing the frequency mixing, amplifies the predistortion signal experiencing the frequency mixing, and outputs an amplified signal.